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Introduction

These notes were written to complement a series of lectures to be delivered
at IMCA, Instituto de Matemática y Ciencias Afines, Lima, Perú, in July
2002. Our aim was to present, in a form as elementary as possible, the
definition and basic properties of point residues from a geometric point of
view. This concept was introduced by Alexander Grothendieck around 1957
and an extensive account of it was given by R. Hartshorne in [Ha]. Since our
point of view was to present it in a geometric fashion, we were very much
guided by the works [Gr], [G-H] and [A-V-GZ].

Throughout these notes we will sometimes refer, without proof, to results
on Differential Topology, Commutative Algebra, Several Complex Variables
and Algebraic Topology. In each section we quote basic references on these
subjects and we urge the reader, in case he (she) is not familiarized with
them, to have this bibliography at hand.

We are grateful to IMCA for the invitation, to César Camacho for the
suggestion of lecturing there and to Mariana Cornelissen and Flaviana Dutra
for revising the manuscript.

Belo Horizonte, April 2002

Márcio G. Soares

Dep. Matemática - UFMG

msoares@ufmg.br

∗Partially supported by CNPq-Brazil.
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Chapter 1

A brief view of Cauchy’s
theory

1.1 Index of a point relative to a path

We start with some very basic definitions. Let U ⊂ C be an open set
and f : U → C be a function. The derivative of f at a point p ∈ U , noted
f ′(p), is

lim
z→p

f(z)− f(p)
z − p

provided this limit exists. f is holomorphic on U if f ′(p) exists for all p ∈ U .
A domain in C is an open connected set U ⊂ C.
A path in Cn is a continuous mapping γ : J → Cn, where J = [a, b] ⊂ R

and a < b. γ(a) and γ(b) are called the initial point and the end point of γ,
respectively. γ is said to be closed if γ(a) = γ(b). We will denote by γ the
image of the interval J by γ, that is, γ = γ(J) ⊂ C . γ is differentiable if γ ′

exists and is continuous throughout J (note that, at the end points of J , we
have only one-sided derivatives).

If γ1 and γ2 are two paths such that the end point of γ1 is the initial
point of γ2, we can form the path γ1 · γ2, called the juxtaposition of γ1

and γ2, as follows: let [ai, bi] be the interval of definition of γi. Choose
C1 diffeomorphisms h1, h2, preserving orientations, h1 : [0, 1/2] → [a1, b1],
h2 : [1/2, 1] → [a2, b2] and define γ1 · γ2 by

γ1 · γ2(t) =





γ1 ◦ h1(t) , if t ∈ [0, 1/2]

γ2 ◦ h2(t) , if t ∈ [1/2, 1].

3
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Clearly γ1 · γ2 = γ1 ∪ γ2 and, similarly, we can form the juxtaposition of a
finite number of paths.

Finally, γ is a piecewise differentiable path if it is the juxtaposition of
a finite number of differentiable paths. The reverse path γ− of a path γ is
defined by γ−(t) = γ(a + b− t). Observe that the initial point and the end
point of γ− are the end point and the initial point of γ, respectively, and
that γ = γ−.

Consider a differentiable path γ : J → C and let f be a continuous
complex valued function defined on γ. The integral of f along γ is defined
by:

∫

γ

f =
∫

γ

f(z) dz =
b∫

a

f(γ(t)) γ ′(t) dt.

Remark 1 The following properties hold:
(i) The path integral is independent of the parametrization of γ. This means
the following: let h : [a′, b′] → [a, b] be a C1 diffeomorphism preserving
orientation, that is, h(a′) = a, h(b′) = b and let λ = γ ◦ h. Then

∫

λ

f =
b′∫

a′

f(λ(s))λ′(s) ds =

b′∫

a′

f(γ ◦ h(s)) γ ′(h(s))h′(s) ds =
b∫

a

f(γ(t)) γ ′(t) dt =

∫

γ

f.

(ii) The path integral is “sensitive to the orientation” (exercise):
∫

γ−

f = −
∫

γ

f.

(iii) Let M ≥ sup
γ
|f |, then (exercise)

∣∣∣∣∣∣

∫

γ

f

∣∣∣∣∣∣
≤ M

b∫

a

| γ ′(t)| dt

where
b∫
a
| γ ′(t)| dt is, by definition, the lenght of the path γ.
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(iv) Let f : U → C be a continuous function. Recall that a primitive of f is
a function F : U → C such that F ′(z) = f(z) for all z ∈ U . Note that F is
necessarily holomorphic. Suppose f admits a primitive in U and let γ be a
path in U with initial point z1 and end point z2, then (exercise)

∫

γ

f = F (z2)− F (z1).

In particular, if γ is closed we get
∫
γ

f = 0. ♦

More generally, for a piecewise-differentiable path γ = γ1 · . . . · γk and a
continuous f whose domain of definition contains γ1 · . . . · γk, we set

∫

γ1·...·γk

f =
∫

γ1

f + · · ·+
∫

γk

f.

From now on, unless explicitly stated, by a path we shall mean a piece-
wise differentiable path.

We are now in a position to start exploiting the Cauchy kernel
dw

w − z
.

Consider a path γ in C. Its image γ is a compact subset of the plane and
therefore is limited. Choose a disc D containing γ. The complement C \D
is connected, not bounded and contained in C \ γ hence, C \D is contained
in a connected component of C \ γ and we conclude that C \ γ has precisely
one unbounded component.

Now let γ be a closed path in C and z ∈ C \ γ. Define the index of the
point z with respect to γ by

Iγ(z) =
1

2πi

∫

γ

dw

w − z
.

We have the following integrality result:

Theorem 1.1.1 For each z ∈ C\γ the number Iγ(z) is an integer, that is,
we have a function Iγ : C \ γ −→ Z. Moreover, this function is continuous,
hence constant in each connected component of C \ γ and furthermore, it
assumes the value zero in the unbounded component of C \ γ.

Proof: Let γ : [a, b] → C and z ∈ C \ γ. By definition,

Iγ(z) =
1

2πi

b∫

a

γ ′(t)
γ(t)− z

dt.
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Consider the function ψ : [a, b] → C given by

ψ(t) = exp




t∫

a

γ ′(s)
γ(s)− z

ds


 .

We have ψ′(t) =
(

γ ′(t)
γ(t)− z

)
ψ(t) except at the finite set of points {ti}i=1,...,m,

where the path γ is not differentiable. Hence,

ψ′(t)
ψ(t)

=
γ ′(t)

γ(t)− z
(1)

in [a, b] \ {ti}i=1,...,m. Look at the function ϕ(t) =
ψ(t)

γ(t)− z
. It is continuous

in [a, b] and its derivative at any t ∈ [a, b] \ {ti}i=1,...,m is, by (1),

ϕ′(t) =
ψ′(t)(γ(t)− z)− ψ(t)γ ′(t)

(γ(t)− z)2
= 0.

It follows that ϕ is constant in [a, b] and, since ϕ(a) =
1

γ(a)− z
, we have

ψ(t) =
γ(t)− z

γ(a)− z
∀ t ∈ [a, b].

Since γ(a) = γ(b) we get ψ(b) = 1. Therefore,

exp




b∫

a

γ ′(s)
γ(s)− z

ds


 = 1

and we conclude that
b∫

a

γ ′(s)
γ(s)− z

ds = 2πik, with k an integer. This shows

Iγ(z) ∈ Z . The continuity of Iγ will follow from the

Lemma 1.1.2 The function Iγ admits a power series expansion around
each ζ ∈ C \ γ.

Proof: Fix ζ ∈ C \ γ and let D(ζ; r) be an open disc contained in C \ γ
and centered at ζ. Now, for any t ∈ [a, b] we have |γ(t)− ζ| ≥ r and then

∣∣∣∣
z − ζ

γ(t)− ζ

∣∣∣∣ ≤
|z − ζ|

r
< 1



1.1. INDEX OF A POINT RELATIVE TO A PATH 7

for any z ∈ D(ζ; r). Hence, for fixed z, the series

∞∑

i=0

(z − ζ)i

(γ(t)− ζ)i

converges uniformly on [a, b]. Since

1
γ(t)− z

=
1

γ(t)− ζ + ζ − z
=

1
γ(t)− ζ

1(
1− z − ζ

γ(t)− ζ

)

=
1

γ(t)− ζ

∞∑

i=0

(z − ζ)i

(γ(t)− ζ)i =
∞∑

i=0

(z − ζ)i

(γ(t)− ζ)i+1

we conclude

Iγ(z) =
1

2πi

b∫

a

∞∑

i=0

γ ′(t)
(γ(t)− ζ)i+1 (z − ζ)i dt

=
1

2πi

∞∑

i=0




b∫

a

γ ′(t)
(γ(t)− ζ)i+1 dt


 (z − ζ)i

because we can interchange summation and integration. The lemma is
proved.

ut
The lemma shows Iγ is a continuous function. It remains to show that

Iγ(z) = 0 for z in the unbounded component of C \ γ. To this end choose a
point z in this component which satisfies

inf
t∈[a,b]

|z − γ(t)| >
b∫

a

| γ ′(t)| dt.

It follows from (iii) of Remark 1 that

| Iγ(z)| ≤ 1
inf

t∈[a,b]
|z − γ(t)|

b∫

a

| γ ′(t)| dt < 1

and since Iγ is integer-valued and continuous it must be identically zero in
the unbounded component. This finishes the proof of the theorem.

ut
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Example 1.1.3 Let γ be a circle centered at a point z ∈ C, γ(t) = z +
re2πit, r > 0, 0 ≤ t ≤ 1. Then

Iγ(z) =
1

2πi

∫

γ

1
w − z

dw =
1

2πi

1∫

0

2πi re2πit

re2πit
dt =

1∫

0

dt = 1.

We leave to the reader the task to convince himself that the index, Iγ(z),
measures the effective number of turns that the plane vector γ(t) describes
around the point z, as t varies in the interval of definition of γ.

1.2 Holomorphic functions

In this section we present the structure of Cauchy’s theory on holomor-
phic functions. The first step is the simple result (recall (iv) of Remark
1):

Proposition 1.2.1 Let f : U → C be a continuous function defined in the
domain U ⊂ C. Then the following properties are equivalent:
(i) f admits a primitive in U .

(ii)
∫

γ

f = 0 for any closed path γ in U .

(iii)
∫

λ

f depends only on the initial and end points of any path λ in U .

Proof: Exercise or see [Soares].
ut

Next we have the fundamental result

Theorem 1.2.2 (Cauchy-Goursat) Let f : U → C be a holomorphic
function defined in the domain U ⊂ C. Assume T is a closed triangular
region entirely contained in U and denote by ∆ its boundary. Then

∫

∆

f = 0.

Proof: See [Soares].
ut

We exploit this result for a particular type of open sets in the plane.
Suppose U ⊂ C is open. U is a starlike domain if there exists a point
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z0 ∈ U with the property that, given any point z ∈ U the line segment z0 z
is entirely contained in U . Any convex open set is an example of such a
domain. We then have:

Corollary 1.2.3 Let U ⊂ C be a starlike domain and f : U → C a holo-
morphic function. Then f admits a primitive in U .

Proof: See [Soares].
ut

Using this corollary we imediately have

Corollary 1.2.4 (Cauchy-Goursat revisited) Let U ⊂ C be a starlike
domain and f : U → C a holomorphic function. If γ is a closed path in U
then ∫

γ

f = 0.

Proof: Exercise.
ut

Corollary 1.2.4 allow us to prove the

Theorem 1.2.5 (Local Cauchy’s integral formula) Let U ⊂ C be a
domain and f : U → C a holomorphic function. Let D(z0, r0) ⊂ U be a
closed disc and Γ its boundary, oriented counterclockwise. If z is any point
in D(z0, r0) then,

f(z) =
1

2πi

∫

Γ

f(w)
w − z

dw.

Proof: See [Soares].
ut

This fundamental theorem unveils the local nature of holomorphic func-
tions because, by manipulating the integrand we deduce the following facts:
(i) holomorphic functions have derivatives of all orders at all points of their
domains and

f (k)(z) =
1

2πi

∫

Γ

f(w)
(w − z)k+1

dw, k ≥ 0.

Note that the derivatives of a holomorphic function are also holomorphic.
(ii) holomorphic functions are analytic, that is, if ζ belongs to the domain
of f then

f(z) =
∞∑

i=0

f (i)(ζ)
i!

(z − ζ)i
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and this series has positive radius of convergence.
From (i) we deduce the

Proposition 1.2.6 (Cauchy’s estimates) Let f be holomorphic on the
disc D(ζ, r) and |f(z)| ≤ M for all z ∈ D(ζ, r). Then

|f (k)(ζ)| ≤ k!M
rk

.

Proof: Exercise.
ut

This last proposition furnishes the

Theorem 1.2.7 (Liouville’s theorem) Let f : C → C be holomorphic
(such a function is called an entire function). If |f | is bounded then f is
constant.

Proof: Suppose |f(z)| ≤ M ∀ z ∈ C. Let ζ ∈ C. The Cauchy estimate
|f ′(ζ)| < M/r holds for all r > 0. Hence f ′(ζ) = 0 ∀ ζ ∈ C and f is
constant.

ut
A partial converse to theorem 1.2.2 is the

Theorem 1.2.8 (Morera’s theorem) Let U ⊂ C be a domain and f :

U → C a continuous function. Suppose
∫

∆

f = 0 for every triangular path

∆ ⊂ U . Then f is holomorphic in U .

Proof: Let ζ ∈ U and choose a disc D(ζ, r) ⊂ U , r > 0. Use the hypothesis
to show that f admits a primitive F in D(ζ, r). Since F is holomorphic and
F ′ = f in D(ζ, r), we conclude that f is holomorphic.

ut
We now introduce some objects of homological nature and then proceed

to present the global theorem of Cauchy.
A chain σ is a formal sum of a finite number of paths in the plane,

σ = γ1 + · · ·+ γk. If f is a continuous function defined in σ = γ1 ∪ · · · ∪ γk

we define ∫

σ

f =
k∑

i=1

∫

γi

f.

If σ is contained in a domain U ⊂ C, we say that σ is a chain in U .
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Let σ = γ1 + · · ·+ γk be a chain. If each γi is replaced by its reverse γ−i ,
then the chain so obtained is denoted by −σ and

∫

−σ

f = −
∫

σ

f.

In this way chains can be added and subtracted.
Observe that a chain σ can be expressed in several ways as a sum of

paths and, in case σ = γ1 + · · ·+ γk = α1 + · · ·+ αm, we have

k∑

i=1

∫

γi

f =
m∑

j=1

∫

αj

f

for any f which is continuous and defined in γ1 ∪ · · · ∪ γk ∪ α1 ∪ · · · ∪ αm.
If the chain σ = γ1 + · · ·+ γk is such that all paths γi are closed, then σ

is called a cycle. Since the representation of a chain as a sum of paths is not
unique, a cycle may be represented by a sum of paths that are not closed.

Let σ = γ1 + · · ·+ γk be a cycle. If z ∈ C \ σ then we set

Iσ(z) =
k∑

i=1

Iγi(z).

Note that I−σ(z) = −Iσ(z). With this at hand we have the main result of
the theory:

Theorem 1.2.9 (Cauchy’s theorem) Let U ⊂ C be a domain and f :
U → C a holomorphic map. Suppose σ is a cycle in U satisfying

Iσ(ζ) = 0 ∀ ζ 6∈ U.

Then,

Iσ(z) f(z) =
1

2πi

∫

σ

f(w)
w − z

dw for z ∈ U \ σ, (I)

∫

σ

f(z) dz = 0. (II)

Moreover, if σ0 and σ1 are cycles in U such that Iσ0(ζ) = Iσ1(ζ) for all
ζ 6∈ U then, ∫

σ0

f(z) dz =
∫

σ1

f(z) dz. (III)
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Proof: The proof of this global version of Cauchy’s theorem is due to
J.Dixon [Dixon]. Consider the function g : U × U → C defined by

g(z, w) =





f(w)− f(z)
w − z

, if w 6= z

f ′(z) , if w = z.

Lemma 1.2.10 g is continuous.

Proof: It’s immediate that g is continuous in U × U \ {(ζ, ζ) : ζ ∈ U}.
Let us show its continuity at a point (ζ, ζ). Given ε > 0 choose δ > 0 such
that |` − ζ| < δ ⇒ |f ′(`) − f ′(ζ)| < ε. Let z and w belong to the open set
D(ζ, δ) ∩ U . If w = z we get |g(z, z) − g(ζ, ζ)| < ε. If z 6= w consider the
line segment joining them, `(t) = (1− t)z + tw, 0 ≤ t ≤ 1. We have

f(w)− f(z) = f(`(1))− f(`(0)) =

1∫

0

f ′(`(t)) `′(t) dt =

1∫

0

f ′(`(t)) (w − z) dt

so that

g(z, w) =
1∫

0

f ′(`(t)) dt.

Since g(ζ, ζ) = f ′(ζ) =
∫ 1
0 f ′(ζ) dt we obtain

g(z, w)− g(ζ, ζ) =
1∫

0

[
f ′(`(t))− f ′(ζ)

]
dt.

By (iii) of Remark 1

|g(z, w)− g(ζ, ζ)| ≤ sup
t∈[0,1]

∣∣f ′(`(t))− f ′(ζ)
∣∣ < ε

and the lemma is proved.
ut

Next we consider, for fixed w ∈ U , the function gw : U → C defined by
gw(z) = g(z, w). This function is clearly holomorphic in U \ {w}. We claim
the
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Lemma 1.2.11 gw is holomorphic in U .

Proof: By the previous lemma, gw is continuous at w and gw(w) = f ′(w).
Put φ(z) = (z−w)gw(z). φ is continuous in U , holomorphic in U \ {w} and
φ(w) = 0. Now,

lim
z→w

φ(z)− φ(w)
z − w

= lim
z→w

(z − w)gw(z)
z − w

= lim
z→w

gw(z) = f ′(w),

so φ is differentiable at w and therefore holomorphic in U . Around w it has
a convergent power series expansion

φ(z) = f ′(w) (z − w) +
∞∑

j=2

aj(z − w)j =

(z − w)[f ′(w) +
∞∑

j=2

aj(z − w)j−1].

We conclude gw(z) = f ′(w) +
∞∑

j=2
aj(z − w)j−1 and the lemma is proved. w

is called a removable (or fake) singularity (which will be considered later).
ut

Returning to the proof of the theorem, we let ϕ : U → C be defined by

ϕ(z) =
1

2πi

∫

σ

g(z, w) dw.

We claim that ϕ is continuous. In fact, let (zn) → z be a sequence
in U , convergent to z ∈ U . The set ({zn}∞n=1 ∪ {z}) × σ is a compact
subset of U × U . Hence, g is uniformly continuous in this set and therefore
gw(zn) → gw(z) uniformly on w. This shows the continuity of ϕ.

Let us prove that ϕ is holomorphic in U . Consider a closed triangular
region T ⊂ U with boundary ∆. Then,

∫

∆

ϕ(z) dz =
1

2πi

∫

σ




∫

∆

g(z, w) dz


 dw =

1
2πi

∫

σ




∫

∆

gw(z) dz


 dw = 0

because
∫
∆

gw(z) dz = 0 since gw is holomorphic. Invoking Morera’s theorem

we conclude that ϕ is holomorphic.
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Set V = {z ∈ C : Iσ(z) = 0}. By hypothesis, C\U ⊂ V and by theorem
1.1.1, the unbounded component of C \ σ is also contained in V . Define the
holomorphic function ψ : V → C by

ψ(z) =
1

2πi

∫

σ

f(w)
w − z

dw.

If z ∈ U ∩ V then

ϕ(z) =
1

2πi

∫

σ

f(w)− f(z)
w − z

dw =

1
2πi

∫

σ

f(w)
w − z

dw − f(z)
2πi

∫

σ

1
w − z

dw =

1
2πi

∫

σ

f(w)
w − z

dw − f(z) Iσ(z) =

1
2πi

∫

σ

f(w)
w − z

dw = ψ(z).

Hence, there exist a holomorphic function Ψ : U ∪V → C such that Ψ|U = ϕ
and Ψ|V = ψ. Since V contains the complement of U we have that Ψ is an
entire function. Now,

lim
|z|→∞

Ψ(z) = lim
|z|→∞

ψ(z) = 0

and we conclude that |Ψ| is bounded. By Liouville’s theorem Ψ(z) = 0 for
all z ∈ C. It follows that ϕ(z) = 0 for all z ∈ U . Hence, for z ∈ U \ σ,

0 = ϕ(z) =
1

2πi

∫

σ

f(w)− f(z)
w − z

dw =

1
2πi

∫

σ

f(w)
w − z

dw − f(z)
2πi

∫

σ

1
w − z

dw =

1
2πi

∫

σ

f(w)
w − z

dw − f(z) Iσ(z)

and (I) is proved.
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To prove (II) we use (I) as follows: choose ζ ∈ U \ σ and let F (z) =
(z − ζ) f(z). Since F (ζ) = 0 we get

∫

σ

f(z) dz =
∫

σ

F (z)
z − ζ

dz = 2πi Iσ(ζ) F (ζ) = 0.

Finally, let σ0 and σ1 be cycles in U such that Iσ0(ζ) = Iσ1(ζ) for all
ζ 6∈ U . Consider the cycle σ0 − σ1. Then Iσ0−σ1(ζ) = Iσ0(ζ) − Iσ1(ζ) = 0.
By (II),

0 =
∫

σ0−σ1

f(z) dz =
∫

σ0

f(z) dz −
∫

σ1

f(z) dz.

This proves (III) and finishes the proof of the theorem.
ut

1.3 Meromorphic functions

The annulus A(ζ;R1, R2) with center ζ ∈ C and radii R1, R2 where
0 ≤ R1 < R2 ≤ ∞, is the open set

A(ζ; R1, R2) = {z ∈ C : R1 < |z − ζ| < R2}.
Holomorphic functions defined in an annulus have a representation by

power series as follows:

Theorem 1.3.1 (Laurent’s expansion) Consider a holomorphic func-
tion f : A(ζ;R1, R2) → C. Then

f(z) =
∞∑

m=1

bm
1

(z − ζ)m +
∞∑

n=0

an (z − ζ)n,

where the series
∞∑

m=1

bm
1

(z − ζ)m converges for |z − ζ| > R1 and the series

∞∑

n=0

an (z − ζ)n converges for |z − ζ| < R2. Moreover, this expansion is

unique and the coefficients bm and an are given by:

bm =
1

2πi

∫

γ

f(z) (z − ζ)m−1 dz, m ≥ 1

an =
1

2πi

∫

γ

f(z)
(z − ζ)n+1 dz, n ≥ 0.
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Proof: See [Soares].
ut

Definition 1.3.2 Let f : U → C be a holomorphic function defined in the
domain U . A point ζ ∈ C \ U is an isolated singularity of f if there exists
a positive R such that the annulus A(ζ; 0, R) ⊂ U .

Invoke the Laurent expansion of f in A(ζ; 0, R):

f(z) =
∞∑

m=1

bm

(z − ζ)m +
∞∑

n=0

an (z − ζ)n.

We have the following mutually exclusive possibilities:
(1) bm = 0 for all m ≥ 1. In this case we say that ζ is a removable singularity
of f . By setting f(ζ) = a0 we have that f admits a holomorpic extension
to the disc D(ζ, R).
(2) There exist a k ≥ 1 such that bk 6= 0 and bm = 0 for all m > k. In this
case we say that ζ is a pole of order k of f , or simply a pole of f . Observe
that for z ∈ A(ζ; 0, R) we have:

f(z) =
bk

(z − ζ)k
+ · · ·+ b1

(z − ζ)
+

∞∑

n=0

an (z − ζ)n.

The rational function

Q(z) =
bk

(z − ζ)k
+ · · ·+ b1

(z − ζ)

is called the principal part of f at the pole ζ. It follows from (1) that
the function g(z) = (z − ζ)k f(z) has a removable singularity at ζ and that
g(ζ) = bk 6= 0. Hence,

lim
z→ζ

f(z) = lim
z→ζ

g(z)
(z − ζ)k

= ∞.

(3) bm 6= 0 for infinite values of m. In this case we say that ζ is an essential
singularity of f .

Another caracterization of isolated singularities is the following:

Proposition 1.3.3 Let ζ be an isolated singularity of f . Then,
(1) ζ is a removable singularity if, and only if, |f | is bounded in some

annulus A(ζ; 0, R) ⊂ U .
(2) ζ is a pole of f if, and only if, lim

z→ζ
f(z) = ∞.

(3) ζ is an essential singularity of f if, and only if, for every R > 0 such
that A(ζ; 0, R) ⊂ U , f(A(ζ; 0, R)) is dense in C.
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Proof: See [Soares]
ut

Definition 1.3.4 A function f is said to be meromorphic on an open set
U if there is a subset P of U such that:

(i) P is discrete.
(ii) f is holomorphic in U \ P.
(iii) f has a pole at each point of P.

Note that the possibility P = ∅ is allowed and so holomorphic functions
are also meromorphic.

Definition 1.3.5 Let f be a meromorphic function on the open set U and
ζ ∈ P. Invoke the Laurent expansion of f in an annulus A(ζ; 0, R) ⊂ U ,

f(z) =
bk

(z − ζ)k
+ · · ·+ b1

(z − ζ)
+

∞∑

n=0

an (z − ζ)n.

The Cauchy residue of f at ζ, noted Res(f, ζ), is the coefficient b1.

Let us point out that Res(f, ζ) is not invariant by changes of coordinates.
For instance, if f(z) = 1/z, then Res(f, 0) = 1. Let h(w) = w/(w−1). Then
f ◦ h(w) = 1− 1/w and Res(f ◦ h, 0) = −1.

Consider the principal part Q(z) =
bk

(z − ζ)k
+ · · · + b1

(z − ζ)
of f at ζ

and let σ be a cycle in C such that ζ 6∈ σ. Applying (I) of Cauchy’s theorem
to the constant (entire) functions fj(z) ≡ bj , 1 ≤ j ≤ k, we get

1
2πi

∫

σ

bj

(z − ζ)j dz =




Iσ(ζ) f

(j−1)
j (ζ) = 0, for 2 ≤ j ≤ k

Iσ(ζ) f1(ζ) = Iσ(ζ) b1, for j = 1.

Therefore,
1

2πi

∫

σ

Q(z) dz = Iσ(ζ) Res(Q, ζ). (?)

We have the

Theorem 1.3.6 (Cauchy’s residue theorem) Let f be a meromorphic
function on the domain U and P be its set of poles. If σ is a cycle in U \ P
such that Iσ(w) = 0 for all w 6∈ U then,

1
2πi

∫

σ

f(z) dz =
∑

ζ∈P

Iσ(ζ) Res(f, ζ).
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Proof: By theorem 1.1.1 we know that Iσ is constant in each connected
component C of C \ σ. If C is unbounded, or if C ∩ (C \ U) 6= ∅ then, by
theorem 1.1.1, or by the hypothesis, Iσ(w) = 0,∀ w ∈ C. Since the set P
is discrete, we conclude that the set P∗ = {z ∈ P : Iσ(z) 6= 0} is finite
(it could as well be empty). Hence the summation above is actually over a
finite number of points ζ ∈ P.

Let P∗ = {ζ1, . . . , ζm} and Q1, . . . , Qm be the principal parts of f at
ζ1, . . . , ζm, respectively. Set g = f − (Q1 + · · ·+ Qm). The points ζ1, . . . , ζm

are all removable singularities of g and therefore g is holomorphic on the
open set U \ (P \ P∗). By hypothesis, Iσ(w) = 0 for all w 6∈ U \ (P \ P∗),
so that we can apply (II) of Cauchy’s theorem 1.2.9 to the function g and
obtain

0 =
∫

σ

g(z) dz =
∫

σ

f(z) dz −
∫

σ

(Q1(z) + · · ·+ Qm(z)) dz.

But this gives, using (?),

1
2πi

∫

σ

f(z) dz =
m∑

i=1

1
2πi

∫

σ

Qi(z) dz =
m∑

i=1

Iσ(ζi) Res(Qi, ζi).

Since Res(Qi, ζi) = Res(f, ζi) we get

1
2πi

∫

σ

f(z) dz =
∑

ζ∈P

Iσ(ζ) Res(f, ζ).

ut
The next two results are very useful consequences of the residue theorem.

Before stating them let’s recall the multiplicity of a zero of a holomorphic
function of one variable. Suppose f : U → C is a holomorphic function
defined in a neighborhood U ⊂ C of a point ζ and such that f(ζ) = 0.
Expanding f in power series around ζ we get

f(z) =
∞∑

k=µ

ak (z − ζ)k = (z − ζ)µ g(z)

where aµ = g(ζ) 6= 0, g is holomorphic and g(z) =
∞∑

j=0

aµ+j (z − ζ)j . The

number µ = µ(f, ζ) is the multiplicity of the zero ζ of f .
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Remark 2 Let f be a meromorphic function in U and L′f be the function

L′f(z) =
f ′(z)
f(z)

. We claim that the poles of L′f are the zeros and poles

of f . To see this let ζ ∈ U . If f(ζ) 6= 0 then L′f is holomorphic in a
neighborhood of ζ and Res(L′f, ζ) = 0. If ζ is a zero of multiplicity µ of f ,
then f(z) = (z − ζ)µ g(z) in a neighborhood of ζ, g(ζ) 6= 0 and

L′f(z) =
f ′(z)
f(z)

=
µ

z − ζ
+

g′(z)
g(z)

,

so that L′f has a pole of order 1 at ζ with Res(L′f, ζ) = µ. Now if ζ is
a pole of order m of f then, in an annulus A(ζ; 0, ε) ⊂ U we have f(z) =
(z − ζ)−m h(z), where h is holomorphic in this annulus with h(ζ) 6= 0. Hence

L′f(z) =
f ′(z)
f(z)

=
−m

z − ζ
+

h′(z)
h(z)

and L′f has a pole of order 1 at ζ with Res(L′f, ζ) = −m. Summarizing

Res(L′f, ζ) = 0 ⇐⇒ f is holomorphic at ζ and f(ζ) 6= 0.

Res(L′f, ζ) = µ > 0 ⇐⇒ ζ is a zero of multiplicity µ of f.

Res(L′f, ζ) = −m < 0 ⇐⇒ ζ is a pole of order m of f.
♦

Let’s now make the following convention. If f is a meromorphic function
on U , denote by Z and P its sets of zeros and poles, respectively. The
number of zeros and poles of f in V ⊂ U , Z(f ;V ), P(f ; V ), counted with
multiplicities is, by definition:

Z(f ; V ) =
∑

ζ∈V ∩Z
µ(f, ζ)

P(f ; V ) =
∑

ζ∈V ∩P
m(f, ζ)

where m(f, ζ) is the order of the pole ζ of f . With this at hand we have the

Theorem 1.3.7 (Argument Principle) Let U ⊂ C be a domain and γ
a closed path in U such that Iγ(ζ) = 0 for all ζ 6∈ U . Assume Iγ(ζ) = 0
or 1 for all ζ ∈ U \ γ and let U∗ = {ζ ∈ C : Iγ(ζ) = 1}. Suppose f is
a meromorphic function on U and that f has neither zeros nor poles on γ.
Then

Z(f ; U∗)− P(f ;U∗) =
1

2πi

∫

γ

f ′(z)
f(z)

dz = IΓ(0)

where Γ = f ◦ γ.
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Proof: We start by proving the last equality.

IΓ(0) =
1

2πi

∫

Γ

dz

z
=

1
2πi

1∫

0

Γ′(t)
Γ(t)

dt =

1
2πi

1∫

0

(f ◦ γ)′(t)
(f ◦ γ) (t)

γ′(t) dt =
1

2πi

∫

γ

f ′(z)
f(z)

dz.

To prove the first equality let us look at the function L′f . It is meromorphic
in U and by the hypotheses and remark 2, it has no poles on γ. Let P (L′f)
denote its set of poles. Invoking the Residue theorem 1.3.6 and remark 2
again we get

1
2πi

∫

γ

f ′(z)
f(z)

dz =
1

2πi

∫

γ

L′f(z) dz =

∑

ζ∈P (L′f)

Res(L′f, ζ) = Z(f ;U∗)− P(f ;U∗).

ut
Theorem 1.3.8 (Rouché’s principle) Let U ⊂ C be a domain and γ a
closed path in U such that Iγ(ζ) = 0 for all ζ 6∈ U . Assume Iγ(ζ) = 0 or 1
for all ζ ∈ U \ γ and let U∗ = {ζ ∈ C : Iγ(ζ) = 1}. Let f be holomorphic
on U , with no zeros on γ. If g is holomorphic on U and satisfies

|f(z)− g(z)| < |f(z)| ∀ z ∈ γ

then
Z(g;U∗) = Z(f ; U∗).

Proof: The inequality above implies that g has no zeros on γ. Hence the
previous theorem 1.3.7 holds for g and we get Z(g; U∗) = IΛ(0) where Λ is
the closed path Λ = g ◦γ. On the other hand we also have by theorem 1.3.7,
IΓ(0) = Z(f ; U∗) with Γ = f ◦ γ. It remains to show that IΛ(0) = IΓ(0).
We have by hypothesis

|Γ(t)− Λ(t)| < |Γ(t)| ∀ t ∈ [0, 1].

Note that this gives Γ(t) 6= 0 and Λ(t) 6= 0 for all t ∈ [0, 1]. Set ξ(t) =
Λ(t)
Γ(t)

.

Then |1− ξ(t)| < 1 which gives ξ ⊂ D(1, 1), so that 0 lies in the unbounded
component of C \ ξ and we conclude Iξ(0) = 0. Since

ξ′(t)
ξ(t)

=
Λ′(t)
Λ(t)

− Γ′(t)
Γ(t)
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we get

0 = Iξ(0) =
1

2πi

1∫

0

ξ′(t)
ξ(t)

dt =

1
2πi

1∫

0

Λ′(t)
Λ(t)

dt− 1
2πi

1∫

0

Γ′(t)
Γ(t)

dt = IΛ(0)− IΓ(0)

and the theorem is proved.
ut

Rouché’s principle can be used to prove the Fundamental Theorem of
Algebra (exercise).
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Chapter 2

The Index and the
Multiplicity

In this chapter we introduce the topological index of Poincaré Hopf and
the algebraic multiplicity, which became known as Milnor number. These
concepts are fundamental and extremely useful and we shall exploit them
when we talk about residues.

2.1 The Poincaré Hopf index

2.1.1 The Brouwer degree

The basic references for this section are the books by E. Lima [Lima 1]
and J. Milnor [Milnor].

We will be mainly concerned with problems of local nature, so it suffices
for our purposes to consider only manifolds which are embedded in euclidean
spaces. The first tool we need is the

Theorem 2.1.1 (Sard’s theorem) Let U ⊂ Rm be an open set and f :
U → Rn be a smooth map. Denote by Σ the set of critical points of f , that
is, Σ = {p ∈ U : rankf ′(p) < n}. Then the image f(Σ) ⊂ Rn has Lebesgue
measure zero.

Proof: See [Milnor]. ut
Without difficulty we deduce from this the (exercise)

Corollary 2.1.2 (Brown’s theorem) Let X and Y be smooth ma- nifolds
and f : X → Y be a smooth map. Then the set of regular values of f ,
Y \ f(Σ), is everywhere dense in Y.

23
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ut
In order to fix notations let us recall the concept of orientable manifolds.
An orientation for a finite dimensional real vector space is an equiva-

lence class of ordered bases, the relation been defined by: the ordered basis
B determines the same orientation as the ordered basis B′ if the isomor-
phism changing B into B′ has positive determinant. B and B′ determine
opposite orientations if the isomorphism changing B into B′ has negative
determinant. It follows that each non-trivial vector space has precisely two
orientations. In case the vector space is zero dimensional we define orien-
tations by the symbols +1 and −1. For RN the standard orientation is the
one corresponding to the ordered canonical basis

B = {e1, . . . , eN} where ei = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
i−th position

.

Now let X be a connected manifold, dimX = n ≥ 1 (with boundary
or not). X is orientable if we can choose an orientation for each tangent
space TpX in such a way that the following holds: given p ∈ X, there exist
a neighborhood p ∈ U ⊂ X and a diffeomorphism ϕ : U → V , ϕ(U) = V ,
where V ⊂ Rn is open (V ⊂ {x ∈ Rn : xn ≥ 0} is open, in case X
has boundary) which preserves orientation, that is, ϕ′(p) carries the chosen
orientation for TpX into the standard orientation for Rn.

An orientation for a connected manifold can also be given in terms of
differential forms. More precisely, X is orientable if there is a nowhere zero
continuous n-form ω on X. Two such forms, say ω1, ω2, are said to define
the same orientation if ω2 = ρω1 with ρ a positive continuous function on
X (see [Lima1] for details).

If X has a boundary and is orientable, an orientation for X induces an
orientation for ∂X as follows: given p ∈ ∂X, choose a positive basis B =
{v1, v2, . . . , vn} for TpX with the following property: {v2, . . . , vn} generate
Tp∂X and v1 is an outward vector. Then B′ = {v2, . . . , vn} determines
the positive orientation for Tp∂X. If dimX = 1, to each boundary point
p is assigned the orientation −1 or +1 depending on whether a positively
oriented vector at p points inward or outward.

Before introducing the concept of degree recall that a continous map
f : X → Y between two manifolds is proper provided the inverse image
f−1(K) ⊂ X is compact whenever K ⊂ Y is compact.

Let X and Y be oriented manifolds, both of dimension n, Y connected
and f : X → Y a smooth, proper map. Pick a regular point p ∈ X of
f . Then the tangent map f ′(p) : TpX → Tf(p)Y is a linear isomorphism
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between oriented vector spaces. Define the sign of f ′(p) by

sgn f ′(p) =
{

+1 , if f ′(p) preserves orientation
−1 , if f ′(p) reverses orientation

Now, if q ∈ Y is a regular value of f set deg (f, q) =
∑

p∈f−1(q)

sgn f ′(p). The

remarkable fact about deg (f, q) is

Theorem 2.1.3 The integer deg (f, q) does not depend on the regular value
q ∈ Y .

Proof: See [Lima 1].
ut

Hence we have the

Definition 2.1.4 The degree of the map f is deg f = deg (f, q) where q ∈ Y
is a regular value of f .

Recall that a smooth homotopy between two maps f, g : X → Y is a
smooth map F : X × [0, 1] → Y such that F (0, .) ≡ f and F (1, .) ≡ g. The
degree is invariant under homotopy, more precisely:

Theorem 2.1.5 If f is smoothly homotopic to g, then deg f = deg g.

Proof: See [Lima 1].
ut

We shall need the following useful result: suppose that Xn+1 is a compact
oriented manifold with boundary ∂X and Y n is connected and oriented. Let
f : ∂X → Y be a smooth map (note that f is necessarily proper).

Proposition 2.1.6 If f admits a smooth extension F : X → Y , then
deg f = 0.

Proof: See [Milnor].
ut

2.1.2 Holomorphic maps

In this section we’ll be interested in maps f : Cn → Cm and in map
germs.

Let U ⊂ Cn be a domain (open and connected set). Recall that if n = 1,
then a function f : U → C is holomorphic provided f ′(z) exists for every



26 CHAPTER 2. THE INDEX AND THE MULTIPLICITY

z ∈ U . If we identify C ≈ R2, z = x + iy, z̄ = x − iy, f(z) = u + iv and
introduce the derivations

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
,

then f holomorphic is equivalent to:

f ′ =
∂f

∂z
=

1
2

(
∂f

∂x
− i

∂f

∂y

)

and is also equivalent to: f is continuous and its partial derivatives with
respect to x and y exist and satisfy the Cauchy-Riemann differential equation

∂f

∂z̄
=

1
2

(
∂f

∂x
+ i

∂f

∂y

)
= 0.

This last equivalence is a difficult theorem of Loomann and Menchof (see
[Na]). It is easy to show this equivalence in case the partial derivatives of f
are continuous (exercise).

Consider now a function f : U → C, U ⊂ Cn.

Definition 2.1.7 f is called partially holomorphic if, for each point (p1, . . . , pn) ∈
U and each j = 1, . . . , n, the function of one variable defined by

zj 7−→ f(p1, . . . , pj−1, zj , pj+1, . . . , pn)

is holomorphic. A continuous partially holomorphic function is called holo-
morphic.

A nontrivial theorem due to Hartogs states that a partially holomorphic
function is necessarily continuous (see [Hö], theorem 2.2.8), so we could skip
the word continuous in the above definition.

Let O(U) be the set of holomorphic functions on U . Then,

Proposition 2.1.8 O(U) is an algebra whose set of units O∗(U) consists
of the holomorphic functions on U which vanish nowhere.

Proof: Exercise.
ut

Exercise 1 Let U ⊂ Cn be a domain and denote by dimCO(U) its dimen-
sion as a C-linear space. Show that

dimCO(U) < ∞⇐⇒ dimCO(U) = 1 ⇐⇒ n = 0. ♦
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Identify Cn ≈ R2n by

(z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) ≈ (x1, y1, . . . , xn, yn).

In Cn we introduce the derivations

∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)

for j = 1, . . . , n.
Invoking the theorems of Loomann-Menchof and of Hartogs we see that

a function f is holomorphic if, and only if, it has partial derivatives and
they satisfy the Cauchy-Riemann equations:

∂f

∂z̄j
=

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
= 0, 1 ≤ j ≤ n.

Exercise 2 Show that
(

∂f

∂zj

)
=

∂f̄

∂z̄j
and

(
∂f

∂z̄j

)
=

∂f̄

∂zj
. ♦

Definition 2.1.9 A map f = (f1, . . . , fm) : U → Cm, where U is a domain
in Cn, is holomorphic if each component fj is a holomorphic function. If
also f is a bijection and f−1 is holomorphic, then f is a biholomorphism or
biholomorphic.

We now treat questions of orientation. Let Cn ≈ R2n with the identi-
fication given above. Consider the complexified of R2n, that is, R2n ⊗ C.
The meaning of this is that we consider R2n as a complex vector space, so
the scalar field is now C and dimC(R2n ⊗C) = 2n. We have the following
bases of R2n ⊗C:

B1 =
{

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn
,

∂

∂yn

}
.

Of course this is a basis of R2n (as real vector space) and determines the
standard orientation.

B2 =
{

∂

∂z1
,

∂

∂z̄1
, . . . ,

∂

∂zn
,

∂

∂z̄n

}

and
B3 =

{
∂

∂z1
, . . . ,

∂

∂zn
,

∂

∂z̄1
, . . . ,

∂

∂z̄n

}
.

Let us use these bases to show the
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Proposition 2.1.10 Biholomorphic maps preserve orientation.

Proof: We will show that if we consider f as a smooth map from R2n into
itself, then the derivative f ′(p) preserves the orientation determined by B1.

Let f = (f1, . . . , fn) be a biholomorphism, which we write in coordinates
as f(x1, y1, . . . , xn, yn) = (u1, v1, . . . , un, vn). Then the derivative f ′(p) is
represented by the matrix

[f ′(p)] =




∂(u1, v1)
∂(x1, y1)

· · · ∂(u1, v1)
∂(xn, yn)

...
. . .

...
∂(un, vn)
∂(x1, y1)

· · · ∂(un, vn)
∂(xn, yn)



|p

relative to the basis B1, where

∂(uj , vj)
∂(xk, yk) |p

=




∂uj

∂xk

∂uj

∂yk
∂vj

∂xk

∂vj

∂yk



|p

, 1 ≤ j, k ≤ n.

The change from the basis
{

∂

∂xj
,

∂

∂yj

}
to the basis

{
∂

∂zj
,

∂

∂z̄j

}

is given by the matrix

P =
(

1/2 1/2
−i/2 i/2

)
with P−1 =

(
1 i

1 −i

)
.

Hence, passing from the basis
{

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn
,

∂

∂yn

}

to the basis {
∂

∂z1
,

∂

∂z̄1
, . . . ,

∂

∂zn
,

∂

∂z̄n

}

the matrix representing f ′(p) becomes




P−1 · · · 0

...
. . .

...

0 · · · P−1







∂(u1,v1)
∂(x1,y1) · · · ∂(u1,v1)

∂(xn,yn)

...
...

...
. . .

...
...

...
∂(un,vn)
∂(x1,y1) · · · ∂(un,vn)

∂(xn,yn)



|p




P · · · 0

...
. . .

...

0 · · · P
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=




∂f1

∂z1
0

0
∂f1

∂z1

· · ·
∂f1

∂zn
0

0
∂f1

∂zn
...

. . .
...

∂fn

∂z1
0

0
∂fn

∂z1

· · ·
∂fn

∂zn
0

0
∂fn

∂zn



|p

.

Changing now from the basis
{

∂

∂z1
,

∂

∂z̄1
, . . . ,

∂

∂zn
,

∂

∂z̄n

}

to the basis {
∂

∂z1
, . . . ,

∂

∂zn
,

∂

∂z̄1
, . . . ,

∂

∂z̄n

}

this last matrix transforms into



∂f1

∂z1
· · · ∂f1

∂zn

...
. . .

...

∂fn

∂z1
· · · ∂fn

∂zn

0 · · · 0

...
. . .

...

0 · · · 0

0 · · · 0

...
. . .

...

0 · · · 0

∂f1

∂z1
· · · ∂f1

∂zn

...
. . .

...

∂fn

∂z1
· · · ∂fn

∂zn



|p

,

hence is of the form

[f ′(p)] =




Jf(p) 0

0 Jf(p)


 ,

where

Jf(p) =

(
∂fi

∂zj
(p)

)

1≤i,j≤n

.
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In particular

det[f ′(p)] = detJf(p) detJf(p) =

det Jf(p) det Jf(p) = | detJf(p)|2 > 0

and the proposition is proved.
ut

We finish this section with the

Definition 2.1.11 Let p ∈ Cn. A map germ (smooth or holomorphic) or
germ at p is an equivalence class of maps (smooth or holomorphic) where
two maps are equivalent if they agree on a neighborhood of p. We adopt the
notation f : (Cn, p) → (Cm, q) to denote the germ of f at p with f(p) = q.

2.1.3 The index

We denote by |z| the hermitian norm in Cn, |z| =
√

n∑
j=1

zj z̄j . Consider

map germs f : (Cn, p) → (Cn, q). Without loss of generality we shall assume
f(p) = q = 0 and we also refer to p as a root of f = 0.

Definition 2.1.12 Let f : (Cn, p) → (Cn, 0) be a holomorphic map germ
with f−1(0) = {p}. The index or Poincaré Hopf index of f at p, noted
I p (f), is the degree of the smooth map

f

|f | : S2n−1
ε (p) −→ S2n−1

1

where S2n−1
ε (p) is the euclidean sphere of radius ε > 0, S2n−1

ε (p) = {z ∈
Cn : |z − p| = ε} and S2n−1

1 is the unit sphere centered at 0 ∈ Cn.

Remark that if ε is sufficiently small then the index is well defined and,
by Proposition 2.1.6, it does not depend on ε (exercise).

To illustrate this concept we have the

Proposition 2.1.13 If f : (Cn, p) → (Cn, 0) is the germ of a biholomor-
phism, then I p (f) = 1.

Proof: We need the auxiliary



2.1. THE POINCARÉ HOPF INDEX 31

Lemma 2.1.14 Let U be an open convex subset of Cn, p ∈ U , and φ : U →
C holomorphic. Then there exist holomorphic functions g1, . . . , gn : U → C
such that

φ(z) = φ(p) +
n∑

j=1

gj(z) (zj − pj)

where p = (p1, . . . , pn). Moreover, gj(p) =
∂φ

∂zj
(p).

Proof: Fix z ∈ U and define h(t) = φ(p + t(z − p)). Since U is convex h
is well defined on the interval [0, 1]. We have

φ(z)− φ(p) = h(1)− h(0) =
1∫

0

h′(t)dt.

By the chain rule h′(t) =
n∑

j=1

∂φ

∂zj
(p + t(z − p)) (zj − pj). Put

gj(z) =
1∫

0

∂φ

∂zj
(p + t(z − p)) dt.

ut
Now to the proof of the theorem. By using a translation (which is

necessarily orientation preserving) we may assume p = 0. The derivative
of f at 0 is given by

f ′(0).z = lim
t→0

f(tz)
t

hence we let

F (z, t) =





f(tz)
t

, for 0 < t ≤ 1

f ′(0).z , for t = 0.

To see the smoothness of F we invoke the above lemma:

F (z, t) =




n∑

j=1

g1 j(tz) zj , . . . ,
n∑

j=1

gn j(tz) zj


 ∀ t ∈ [0, 1].

Now, F (z, t) 6= 0 for all t ∈ [0, 1] because f is bijective and then

F (z, t)
|F (z, t)|
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gives a smooth homotopy between f/|f | and f ′(0)/|f ′(0)|. This linear iso-
morphism preserves orientation, since GL (n;C) is connected, and we get
1 = I 0 (f ′(0)) = I 0 (f).

ut
Choose a closed euclidean ball centered at p, B̄ε(p), of radius ε small

enough so that the only solution of f(z) = 0 in B̄ε(p) is p.

Proposition 2.1.15 I p (f) is the number of points of the set
f−1(ζ) ∩Bε(p) where ζ is a regular value of f sufficiently close to 0.

Proof: Let δ = inf
S2n−1

ε (p)
|f | > 0. Then |f(z) − t ζ| ≥ δ − t |ζ| > 0 for all

t ∈ [0, 1], z ∈ S2n−1
ε (p) and ζ a regular value sufficiently close to 0. It follows

that f−1(t ζ) ∩ S2n−1
ε (p) = ∅ for all 0 ≤ t ≤ 1. We then have that

F (z, t) =
f(z)− t ζ

|f(z)− t ζ|

gives a smooth homotopy between
f − ζ

|f − ζ| and
f

|f | . Hence, I p (f) = deg
f − ζ

|f − ζ| .
Let {ξ1, . . . , ξk} = f−1(ζ) ∩ Bε(p). Choose two by two disjoint small

spheres S2n−1
δj

(ξj), centered at ξj and satisfying S2n−1
δj

(ξj) ∩ S2n−1
ε (p) = ∅.

Consider the oriented manifold

X = B̄ε(p) \ ∪k
j=1Bδj (ξj).

Its boundary is the disjoint union

∂X = S2n−1
ε (p)q S2n−1

δj
(ξj)q · · · q S2n−1

δk
(ξk).

The map ϕ =
f − ζ

|f − ζ| : ∂X → S2n−1
1 (0) admits the obvious smooth exten-

sion
f − ζ

|f − ζ| to all of X. By proposition 2.1.6 we get degϕ = 0 but, due to

the orientation of X,

degϕ = I p (f)− I ξ1 (f − ζ)− · · · − I ξk
(f − ζ).

Hence, I p (f) = I ξ1 (f − ζ) + · · ·+ I ξk
(f − ζ) = k since f is biholomorphic

at each ξj and then I ξk
(f − ζ) = 1 by proposition 2.1.13.

ut
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Example 2.1.16 Let f(z1, z2) = (z2
1 , z1 + z3

2). Then f−1(0) = {0} and the
index I 0 (f) is given by the number of solutions of the equations z2

1 = ζ1 and
z1 + z3

2 = ζ2 where 0 < |(ζ1, ζ2)| << 1. We immediately obtain I 0 (f) = 6.

More generally we have the

Theorem 2.1.17 Let X ⊂ Cn be a compact and connected smooth manifold
with boundary, dimR X = 2n. Let f be a holomorphic map f : U → Cn

where U is a domain containing X, p ∈ X\∂X, f(p) = 0 and f−1(0)∩∂X =
∅. Suppose the degree of the map

ϕ =
f

|f | : ∂X −→ S2n−1
1 (0)

is k. Then, the equation f = 0 has a finite number of solutions in the
interior of X and the sum of the indices of f at these points is precisely k.

Proof: Assume we have k +1 distinct points ξ1, . . . , ξk+1 in the interior of
X satisfying f(ξj) = 0. Choose two by two disjoint small spheres S2n−1

δj
(ξj),

centered at ξj and satisfying S2n−1
δj

(ξj) ∩ ∂X = ∅. Consider the oriented
manifold

X̃ = X \ ∪k+1
j=1Bδj (ξj).

Its boundary is the disjoint union

∂X̃ = ∂X q S2n−1
δj

(ξj)q · · · q S2n−1
δk+1

(ξk+1).

The map ϕ̃ : ∂X̃ → S2n−1
1 (0), ϕ̃ = f / |f |, extends smoothly as f / |f | :

X̃ → S2n−1
1 (0) and so, by 2.1.6, deg ϕ̃ = 0. But, keeping in mind the

orientation of X̃, deg ϕ̃ = degϕ− I ξ1 (f)− · · · − I ξk+1
(f). Hence, degϕ =

I ξ1 (f)+ · · ·+I ξk+1
(f). Now note that the above proposition 2.1.15 tells us

that I ξj (f) is a positive integer, because it is the number of elements of a
finite non empty set. We conclude degϕ ≥ k+1 which is absurd. Therefore,
we have at most k solutions of the equation f = 0 in the interior of X, and
the reasoning above shows that the sum of the indices of f at these points
is exactly k.

ut
From this we derive the

Theorem 2.1.18 (Additive character of the Poincaré Hopf index)
Suppose we have a holomorphic map germ f from Cn to Cn and p an isolated
root of f = 0. Consider a holomorphic deformation fλ of the germ f =
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f0, depending on the complex parameter λ. Then, as λ varies in a small
neighborhood of 0, the root p decomposes into a finite number of roots of fλ

and the sum of the indices of fλ at these roots is equal to the index of f0 at
p.

Proof: Suppose p = 0 and take a ball Bδ(0) with δ so small that f has no
zeros on the sphere ∂Bδ(0). Let δ1 > 0 be such that if |λ| ≤ δ1, then fλ has
no zeros on the sphere ∂Bδ(0). Put

inf
|λ| ≤ δ1

z ∈ ∂Bδ(0)

|fλ(z)| = K > 0.

Given ε < K there exists δ2 > 0 such that if |λ| ≤ δ2, then

sup
∂Bδ(0)

|f(z)− fλ(z)| < ε.

Let δ3 = min{δ1, δ2}. We claim that, for |λ| < δ3 the maps

fλ

|fλ| : ∂Bδ(0) −→ S2n−1
1 (0)

are homotopic. It’s enough to show they are homotopic to f = f0. Consider
ϕt = (1− t) f + t fλ and suppose there are t0 ∈ (0, 1) and z0 ∈ ∂Bδ(0) such
that ϕt0(z0) = 0. This gives

f(z0) =
−t0

1− t0
fλ(z0).

But then

ε > |f(z0)− fλ(z0)| = 1
1− t0

|fλ(z0)| ≥ K

1− t0
> K

a contradiction. Hence, ϕt(z) never vanishes and gives the desired homotopy
ϕt(z)
|ϕt(z)| .

Now,

I 0 (f) = deg
f

|f | = deg
fλ

|fλ| =
∑

ξi∈f−1
λ

(0)

I ξi (fλ).

ut
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Definition 2.1.19 Let f, g : (Cn, p) → Cn be two holomorphic map germs.
f and g are algebraically equivalent, or A-equivalent, if there is a holomor-
phic map germ A : (Cn, p) → GL (n;C) such that

f(z) = A(z) g(z).

The Poincaré Hopf index is invariant under A-equivalence, more pre-
cisely:

Proposition 2.1.20 If f, g : (Cn, p) → Cn are A-equivalent and f−1(f(p)) =
{p}, then I p (f) = I p (g).

Proof: First of all recall that GL (n;C) is open, dense and connected
in M (n;C) (this is so since GL (n;C) = M (n;C) \ det−1(0) and det = 0
defines a real codimension two subvariety of M (n;C)). Let V ⊂ GL (n;C)
be a small contractible open neighborhood of A(p). Then there is a smooth
homotopy G(z, t) such that G(z, 0) = A(z) ∈ V and G(z, 1) = A(p). It
follows that

G(z, t) g(z)
|G(z, t) g(z)|

is a smooth homotopy between
f(z)
|f(z)| =

A(z) g(z)
|A(z) g(z)| and

A(p) g(z)
|A(p) g(z)| . Now

choose a smooth real path γ in GL (n;C) such that γ(0) = A(p), γ(1) = I.

Then
γ(t) g(z)
|γ(t) g(z)| gives a smooth homotopy between

A(p) g(z)
|A(p) g(z)| and

g(z)
|g(z)| .

ut

2.2 The Milnor number

2.2.1 First results on the multiplicity

We start by introducting some notations:
Op denotes the (local) ring of germs of holomorphic functions at p ∈ Cn.

Op is a C-algebra.
Mp denotes the maximal ideal of Op that is,

Mp = {h ∈ Op : h(p) = 0}.

Given f : (Cn, p) → Ck, f = (f1, . . . , fk), we denote by Tf the ideal in
Op generated by f1, . . . , fk that is,

Tf = {h1 f1 + · · ·+ hk fk : hj ∈ Op} = 〈f1, . . . , fk〉Op .
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Definition 2.2.1 Let f : (Cn, p) → (Cn, 0) be a holomorphic map germ.
The local algebra of f at p is the quotient C-algebra

Qf = Op /Tf .

A germ of biholomorphism ψ : (Cn, p) ←↩ induces a C-algebra isomor-
phism ψ∗ : Op → Op by ψ∗(f) = f ◦ ψ hence, Qf is independent of the
choice of coordinates.

Definition 2.2.2 Let f : (Cn, p) → (Cn, 0) be a holomorphic map germ.
The multiplicity of f at p, or Milnor number of f at p, noted µp(f), is the
dimension of the C-linear space Qf .

Example 2.2.3 Let f = (f1, f2) = (z2
1 , z1 + z3

2 ), p = 0 (recall example
2.1.16). We have z2

1 = f1 ∈ Tf , z1z
3
2 = z1f2−f1 ∈ Tf and z6

2 = z3
2f2−z1z

3
2 ∈

Tf . On the other hand, z3
2 ≡ −z1 mod Tf , z1z2 ≡ −z4

2 mod Tf and
z1z

2
2 ≡ −z5

2 mod Tf . Hence, a basis of the C-linear space Qf is given by
{1, z1, z2, z1z2, z

2
2 , z1z

2
2} and we get µ0(f) = dimCQf = 6.

Lemma 2.2.4 Let f : (Cn, p) → (Cn, 0) be a holomorphic map germ of
multiplicity µ at p. Given any collection of µ germs of functions in Mp,
h1, . . . , hµ, their product h1 · · · hµ lies in Tf .

Proof: Consider the µ + 1 germs H1 = 1, H2 = h1, H3 = h1 · h2, ...
, Hµ+1 = h1 · · · hµ. Since dimCQf = µ, their classes in Qf are linearly
dependent and so there are complex numbers a0, . . . , aµ such that

a0 + a1 H2 + · · ·+ aµ Hµ+1 ∈ Tf .

Let k be the smallest integer such that ak 6= 0. Then

ak Hk+1 + ak+1 Hk+2 + · · ·+ aµ Hµ+1 =

Hk+1

(
ak + ak+1

Hk+2

Hk+1
+ · · ·+ aµ

Hµ+1

Hk+1

)
∈ Tf .

But the factor ak +ak+1
Hk+2

Hk+1
+ · · ·+aµ

Hµ+1

Hk+1
is a unit in Op (which means

it is algebraically invertible) and therefore Hk+1 ∈ Tf . It follows that
Hµ+1 = Hk+1 hk+1 hk+2 · · ·hµ ∈ Tf .

ut
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The usefulness of this lemma will be exploited below, but first recall
that a holomorphic function F (z1, . . . , zn), defined around p = (p1, . . . , pn),
is expressible in the form

F = Fm + Fm+1 + · · ·+ Fm+` + · · · Fm 6≡ 0

where Fj is a homogeneous polynomial of degree j in the variables z1 −
p1, . . . , zn − pn. The number m is called the order of F at p .

Proposition 2.2.5 Let f, g : (Cn, p) → (Cn, 0) be holomorphic map germs
where f has multiplicity µ. Suppose each component of the difference g − f
has an expansion of the form gi − fi = Fi µ+ri + Fi µ+ri+1 + · · · with ri ≥ 1.
Then f and g are A-equivalent.

Proof: Write Fi µ+` as

Fi µ+` =
∑

J

ai J (z1 − p1)
j1 · · · (zn − pn)jn

with j1 + · · ·+ jn = |J | = µ + `. Hence, each term is a product of µ + ` > µ
functions in Mp and by lemma 2.2.4 we can write each one as

ai J (z1 − p1)
j1 · · · (zn − pn)jn = gJ 1 f1 + · · ·+ gJ n fn.

Observe that the functions gJ k lie in Mp because the left side is of degree
µ + ` > µ. We conclude Fi µ+` =

∑
j

b
(µ+`)
i j fj with b

(µ+`)
i j ∈ Mp. Summing

over ` we get gi − fi =
∑
j

ci j fj , ci j ∈ Mp.

This gives g = (I + C) f , C = (ci j). Since C(p) = 0 the matrix I + C is
invertible in a neighborhood of p and the proposition is proved.

ut

Proposition 2.2.6 If f and g are holomorphic A-equivalent map germs
then, they have the same multiplicity at p.

Proof: Since f(z) = A(z) g(z) we have Tf ⊂ Tg and, because A(z) is
invertible, Tg ⊂ Tf so that Tf = Tg.

ut

Exercise 3 Let T : Cn → Cn be an invertible linear transformation. Show
that µ0(T ) = 1.
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Proposition 2.2.7 If f : (Cn, 0) → (Cn, 0) is the germ of a biholomor-
phism then, µ0(f) = 1.

Proof: In fact, we have f(z) = f ′(0).z + F2(z) + F3(z) + · · · and so f(z)−
f ′(0).z = F2(z) + F3(z) + · · ·. By the above exercise µ0(f ′(0)) = 1, by
proposition 2.2.5 f and f ′(0) are A-equivalent and, by proposition 2.2.6,
µ0(f) = µ0(f ′(0)).

ut
Definition 2.2.8 A Pham map (see [Pham]) is a map Υ : Cn → Cn of the
form

ΥJ(z1, . . . , zn) = (z j1
1 , z j2

2 , . . . , z jn
n )

where J = (j1, j2, . . . , jn) ∈ Nn, jk ≥ 1, ∀k.

Lemma 2.2.9 I 0 (ΥJ) = µ0(ΥJ).

Proof: This is shown by direct calculation. By 2.1.15, I 0 (ΥJ) is the
number of solutions of z j1

1 = ξ1, ..., z jn
n = ξn, for (ξ1, . . . , ξn) a regular value

of ΥJ , which is j1 j2 · · · jn. On the other hand, a basis for the local algebra
of ΥJ at 0 is formed by the classes of the monomials

zm1
1 · · · zmn

n , 0 ≤ m1 < j1, . . . , 0 ≤ mn < jn.

There are j1 j2 · · · jn of such.
ut

Proposition 2.2.10 Let f : (Cn, 0) → (Cn, 0) be a germ with multiplicity
µ at 0. Consider the Pham map

Υ[µ+1], [µ + 1] = (µ + 1, . . . , µ + 1)︸ ︷︷ ︸
n components

and the holomorphic deformation Υ[µ+1]
λ = Υ[µ+1] +λ f , λ in a small neigh-

borhood of 0 in C. Then f is A-equivalent to Υ[µ+1]
λ for λ 6= 0.

Proof: Note that Υ[µ+1]
λ −λ f = Υ[µ+1] and all components of Υ[µ+1] have

degree > µ. By proposition 2.2.5, Υ[µ+1]
λ is A-equivalent to λ f . Since λ f is

obviously A-equivalent to f the result follows.
ut

Before we proceed to consider the question of additivity of the Milnor
number (as we did for the Poincaré Hopf index) let us give a result which is
very helpful in understanding the multiplicity.
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Theorem 2.2.11 Let f : (Cn, p) → (Cn, 0) be a holomorphic map germ.
µp(f) is finite if, and only if, p is an isolated point in f−1(0).

Proof: Suppose µp(f) < ∞. Invoke lemma 2.2.4 to write, for i = 1, . . . , n,

(zi − pi)
µ =

∑

j

gi j fj .

If we had a sequence (pk) = ((p1 k, . . . , pn k)) → p with pk 6= p and f(pk) =
0 then, since the gi j are defined in a neighborhood of p, we would have
pi k − pi = 0 for all i, which is absurd.

To prove the converse we invoke Hilbert’s zero-theorem (see [Gu], p. 53).
Suppose p is isolated in f−1(0). Then, there exist mi ≥ 1 such that the germ
(zi − pi)

mi ∈ Tf , i = 1, . . . , n. It follows that µp(f) < ∞.
ut

2.2.2 The preparation theorem

Definition 2.2.12 A Weierstrass polynomial of degree k > 0 is an element
h ∈ O0, n−1[zn] of the form

h = zk
n + a1 zk−1

n + . . . + ak−1 zn + ak

where the coefficients aj are germs at 0 ∈ Cn−1 which vanish at 0, that is,
aj ∈ M0, n−1 ⊂ O0, n−1, 1 ≤ j ≤ k.

Let f : (Cn, 0) → C be a holomorphic function germ. f is regular of order
k in zn if f(0, . . . , 0, zn) = ckz

k
n + · · ·, where ck 6= 0, that is, f(0, . . . , 0, zn)

has a zero of order k at 0 ∈ C.

The following is a fundamental result:

Theorem 2.2.13 (Weierstrass preparation theorem) Suppose f ∈ O0, n

is regular of order k in zn. Then, there is a unique Weierstrass polynomial
h ∈ O0, n−1[zn], of degree k in zn, such that f = uh, where u ∈ O0, n is a
unit.

Proof: The proof is given in the remark below.
ut

Example 2.2.14 The holomorphic version of the implicit function theorem
follows immediately from 2.2.13. Suppose f(0) = 0 and ∂f/∂zn(0) 6= 0 (this
is the same as to say f is regular of order 1 in zn). Then, in a neighborhood
of 0 we have f(z1, . . . , zn) = u(z)(zn + a1(z1, . . . , zn−1)), u(0) 6= 0 and a1

unique. Hence, the level set f = 0 is described by zn = − a1(z1, . . . , zn−1).
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Theorem 2.2.13 is a consequence of the more general

Theorem 2.2.15 (Weierstrass division theorem) Suppose h ∈ O0, n−1[zn]
is a Weierstrass polynomial of degree k. Then, any f ∈ O0, n can be written
uniquely in the form

f = g h + R

where g ∈ O0, n and R ∈ O0, n−1[zn] is a polynomial in zn of degree < k.
Moreover, if f ∈ O0, n−1[zn], then g ∈ O0, n−1[zn].

Proof: See [Gu].
ut

Remark 3 To see why theorem 2.2.15 implies theorem 2.2.13 we do as
follows: let f be regular of order k and consider H(z1, . . . , zn) = zk

n. By the
division theorem f = g H + R which reads

f = g zk
n + a1 zk−1

n + . . . + ak−1 zn + ak

with aj ∈ O0 n−1. If k = 0 then f = a0 and 2.2.13 holds. If k ≥ 1 then,
since f(0) = 0, we have ak(0) = 0 and thus ak ∈ M0 n−1. Successive
differentiation with respect to zn and evaluation at zn = 0 shows that aj ∈
M0 n−1, for j = 1, . . . , k − 1. Now, f(0, zn) = g(0, zn) zk

n and therefore
g(0, zn) is a non zero constant. It follows that g is a unit and 2.2.13 is
proved.

♦
Using the above theorem it can be shown that: Op is a unique factor-

ization domain and Op is a Noetherian ring (see [Gu]).
We will derive another form, much more general, for this theorem. But

first we consider a result from Commutative Algebra.
Let R be a commutative ring with identity and G an abelian group. G

is an R-module if we can define an action of R in G:

R×G −→ G

(x, α) 7−→ xα
such that





(x + y)α = xα + yα

(xy)α = x(yα)

x(α + β) = xα + xβ

1.α = α



2.2. THE MILNOR NUMBER 41

G is finitely generated over R if there is a finite number of elements α1, . . . , αn

such that every element β ∈ G can be written as a linear combination of
the αj with coefficients in R, β = x1α1 + · · · , +xnαn. We have the

Lemma 2.2.16 (Nakayama’s lemma) Let R be a commutative local ring,
M ⊂ R its maximal ideal and G an R-module. Suppose
(i) G is finitely generated.
(ii) G = MG.

Then G = {0}.

Proof: Let e1, . . . , en be a set of generators for G over R. Since G = MG,
each ek can be written as ek = x1α1 + · · ·+ xmαm with xi ∈ M. Using the

fact that the ei generate G we have αi =
n∑

j=1
yi,jej . Hence, ek =

n∑
j=1

zk,jej

with zk,j =
m∑

i=1
xi yi,j ∈ M. This amounts to

(I − Z) e = 0 (?)

where I is the identity n × n matrix, Z = (zk,j), 1 ≤ k, j ≤ n, and e =
(e1, . . . , en).

Now, M is precisely the set of non-invertible elements of R. To see this
suppose x ∈ M were invertible. Then, xx−1 = 1 ∈ M ⇒ M = R which
is absurd. Conversely, if x 6∈ M then, the ideal A generated by x is not
contained in M and, by maximality, A = R. Thus, there is an element
y ∈ R such that xy = 1 and x is invertible. It follows that R/M is a field.

Returning to system (?), the determinant of the the matrix I − Z is of
the form det(I−Z) = 1+x with x ∈ M. Hence it is invertible and the only
solution of the system is e = 0.

ut

Corollary 2.2.17 Let G is a finitely generated R-module. Then, G/M .G
is a finite dimensional vector space over the field R/M. Let p : G →
G/M .G be the projection onto the quocient and u1, . . . , un be a basis for
G/M .G. Choose elements e1, . . . , en ∈ G such that p(ei) = ui. Then the
elements of the set {e1, . . . , en} generate G over R.

Proof: To see that G/M .G is a vector space over R/M is an exercise.
Now let {α1, . . . , α`} be a set of generators of G over R. Given u ∈ G/M .G
there exists β ∈ G such that p(β) = u. Write β = x1α1 + · · ·+ x`α`. Then

u = p(β) = x̃1 p(α1) + · · ·+ x̃` p(α`)
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where x̃j is the class of xj in R/M. This shows {p(α1), . . . , p(α`)} is a basis
for G/M .G and so it is finite dimensional.

Suppose now {u1, . . . , un} is a basis for G/M .G and {e1, . . . , en} as in
the statement. Consider the submodule B of G generated by {e1, . . . , en}
and let C be the quocient module C = G/B. Since G is finitely generated,
the same holds for C.

Let α ∈ G. Then, p(α) = x̃1 u1 + · · ·+ x̃n un and thus α = x1e1 + · · ·+
xnen + t, where t ∈ MG. Hence we have G = B + MG. But then

C = G/B = (B + M .G)/B = M . (G/B) = M .C.

By Nakayama’s lemma, C = 0 and thus G = B.
ut

Returning to our local ring of interest, let f : (Cn, 0) → (Cm, 0) be
a holomorphic map germ and G a O0 n-module. The germ f allow us to
consider G as an O0 m-module as follows: it induces a ring homomorphism,
the pull-back f∗, defined by f∗h = h ◦ f and then we have an action

O0 m ×G −→ G

(h, α) 7−→ (f∗h) α = (h ◦ f) α.

The next theorem is nontrivial and is a cornerstone of the theory of
singulatities of maps. It holds in the real C∞ situation as well, where it is
known as the Malgrange-Mather preparation theorem (see [Mather]). For
our purposes it is enough to present it in the following particular form:

Theorem 2.2.18 (Preparation theorem) Consider a holomorphic map
germ f : (Cn, 0) → (Cm, 0) and let G be a finitely generated O0 n-module.
Then:
G is a finitely generated O0 m-module (via f∗) if, and only if, the C-linear
space G/ (f∗M0,m .G) is finite dimensional.

Proof: Suppose G is finitely generated as O0 m-module (via f∗). Let
{e1, . . . , ek} be a set of generators and choose an element u ∈ G/ (f∗M0,m .G).
If p : G → G/ (f∗M0,m .G) is the natural projection, then u = p(α) for
some α ∈ G. Now, α can be written as α = (h1◦f) e1+· · ·+(hk◦f) ek. Each
hj ∈ O0 m has an expansion hj = cj + Hj where cj ∈ C and Hj ∈ M0 m.
Thus, hj ◦ f = cj + ϕ with ϕ ∈ f∗M0,m. We have

u = p(α) = c1p(e1) + · · ·+ cnp(en)
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and the elements p(e1), . . . , p(en) generate G/ (f∗M0,m .G).
The other direction is the nontrivial one and will be proved in three

steps.
Case of a submersion. Suppose n = m+1 and f : (C×Cm, 0) → (Cm, 0)
is the projection f(w, z) = z. Note that f∗M0 m coincides with M0 m as
a subset of M0 m+1. Choose e1, . . . , ek ∈ G such that {p(e1), . . . , p(ek)} is
a basis for G/ (f∗M0,m .G) as a complex vector space. Now, f∗M0 m ⊂
M0 m+1 and there is a natural surjection

q : G/ (f∗M0,m .G) −→ G/M0,m+1 .G,

thus q(p(e1)), . . . , q(p(ek)) is a set of generators of G/M0,m+1 .G. By corol-
lary 2.2.17 we have that

e1, . . . , ek generate G as an O0 m+1-module. (I)

Next we show that:

All elements of G have the form
k∑

j=1
(cj ej + hj ej)

with cj ∈ C and hj ∈ M0 m.O0 m+1.

(II)

To see this observe that, since {p(e1), . . . , p(ek)} form a basis for G/ (f∗M0,m .G),
every element α ∈ G can be written as α = c1 e1 + · · · + ck ek + β̃ with

β̃ ∈ f∗M0,m .G. Hence, β̃ =
∑̀
i=1

gi σi where gi ∈ M0 m and σi ∈ G. By

(I), σi =
k∑

s=1
ϕs es with ϕs ∈ O0 m+1. Thus, β̃ =

k∑
s=1

(
∑̀
i=1

gi ϕs

)
es. Put

hj =
∑̀
i=1

gi ϕj and (II) is proved.

Apply (II) to the elements w ei, i = 1, . . . , k. We get

w ei =
k∑

j=1

(ci j ej + hi j ej), ci j ∈ C, hi j ∈ M0 m.O0 m+1.

If (δi j) is the identity matrix, then these equations take the form:

(w δi j − ci j − hi j). e = 0

where e = (e1, . . . , ek). Let (bi j) be the matrix whose entries are bi j =
w δi j − ci j − hi j . If (Bi j) is the transpose of the matrix of the cofactors of
(bi j) (Cramer’s rule) then,

(Bi j).(bi j) = det (bi j).(δi j).
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Set P (w, z) = det (bi j). It follows that P (w, z) ei = 0 for each i. Since
hi j ∈ M0 m.O0 m+1 we have that P (w, 0) = det (w δi j − ci j) is a polynomial
in w of order d ≤ k. Thus, P (w, 0) = u(w) wd with u(0) 6= 0 and P (z, w) is
regular of order d at (0, 0). By the Weierstrass preparation theorem 2.2.13,

P = v H. Given α ∈ G, by (II) again we can write α as α =
k∑

i=1
(ci ei +ρi ei)

with ci ∈ C and ρi ∈ M0 m.O0 m+1. By the Weierstrass division theorem
2.2.15

ρi = qi H +
d−1∑

j=0

Ri j(z1, . . . , zm) wj .

But then,

ρi =
(

qi

v

)
(v H) +

d−1∑

j=0

Ri j(z1, . . . , zm) wj =

(
qi

v

)
P +

d−1∑

j=0

Ri j(z1, . . . , zm) wj .

Since P ei = 0, we have that ρi ei =
d−1∑
j=0

Ri j(z1, . . . , zm) wj ei and therefore

α =
k∑

i=1

(ci ei + ρi ei) =
k∑

i=1


ci ei +

d−1∑

j=0

Ri j(z1, . . . , zm) wj ei




and we conclude that G is generated by the kd elements e1, . . . , ek, w e1, . . . , w ek,
..., wd−1 e1, . . . , w

d−1 ek as an O0 m-module because Ri j ∈ O0 m.
Case of an immersion. Let f : (Cn, 0) → (Cm, 0) be a holomorphic
map germ of rank n. By the rank theorem we have that, up to changes of
coordinates, f is written as

(z1, . . . , zn) 7−→ (z1, . . . , zn, 0, . . . , 0).

Now, any germ g : (Cn, 0) → C extends holomorphically to (Cm, 0) (simply
define g(z1, . . . , zn, zn+1, . . . , zm) = g(z1, . . . , zn)). This mea- ns that the
map f∗ : O0 m → O0 n is a surjection. But then any finite set of generators
of G as an O0 n-module is also a set of generators for G as an O0 m-module.
General case. Given f : (Cn, 0) → (Cm, 0) define

F : (Cn, 0) −→ (Cn, 0)× (Cm, 0) by

ξ 7−→ (ξ, f(ξ)).
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Denoting by πi : Ci ×Cm → Ci−1 ×Cm the projection

πi(z1, . . . , zi, w) = (z2, . . . , zi, w)

we have f = π1 ◦ · · · ◦ πn ◦ F . Since F is an immersion we see that G is
a finitely generated O(0,0) n×m-module. Suppose now that G/M0 m .G is
a finite dimensional complex vector space. Since M0 m ⊂ M(0,0) n−1×m we
have a surjection

G/M0 m .G −→ G/M(0,0) n−1×m .G

and this last vector space is finite dimensional. Since πn is a submersion, we
conclude that G is a finitely generated O(0,0) n−1×m-module. Look now at

π∗n−1 : O(0,0) n−2×m −→ O(0,0) n−1×m

and apply the reasoning of the submersive case. We get G a finitely gen-
erated O(0,0) n−2×m-module. Continuing this way, with π∗n−2 and so on, we
obtain the result. The theorem is proved.

ut
To see this theorem in action, consider a holomorphic map germ f :

(Cn, 0) → (Cn, 0) of finite multiplicity µ at 0 and let G = O0 n. We have

f∗ : O0 n −→ O0 n

and remark that f∗M0 n .O0 n = Tf . The complex vector spaceO0 n / f∗M0 n .O0 n

is finite dimensional because dimCO0 n /Tf = µ. By the preparation theo-
rem we have that O0 n is a finitely generated O0 n-module via f∗. Moreover,
by corollary 2.2.17, O0 n is generated by µ elements (via f∗). This means
the following:
Given g ∈ O0 n we can write

g(z) = h1(f(z)) e1(z) + · · ·+ hµ(f(z)) eµ(z)

with hj and ej in O0 n.
We exploit this prepared form of the germ g as follows:

Lemma 2.2.19 Let f : (Cn, 0) → (Cn, 0) be a holomorphic map germ of
finite multiplicity µ at 0. There exist neighborhoods of 0, U in the domain
and V in the target, such that all germs appearing in the preparation of all
polynomials are defined in U and V .
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Proof: Consider the finite collection of functions: 1, zk and ej , for 1 ≤
k ≤ n and 1 ≤ j ≤ µ. Write each one as

f∗(h1(w)) e1(z) + · · ·+ f∗(hµ(w)) eµ(z).

Let V be an open set in the target Cn such that all functions h` appearing
in the preparation of this collection are defined. Let U ⊂ f−1(V ) ⊂ Cn be a
neighborhood of 0 in which all functions ej are defined. We now proceed by
induction on the degree of the polynomials. If P has degree 0 then P = c ·1,
c ∈ C. Any polynomial of degree d can be written as

P (z) =
∑

zjQj + c · 1

where the degree of the polynomials Qj is smaller than d. Assuming the
lemma to hold for the Qj , it holds also for zjQj and therefore for P .

ut

2.3 Relation between I and µ

In this section we show that the Poincaré Hopf index and the Milnor
number coincide. First some definitions.

Let U ⊂ Cn be a domain and denote by O(U) the C-algebra of holo-
morphic functions defined in U . Let Tf be the ideal of O(U) generated by
the components of a holomorphic map f : U → Cn.

Definition 2.3.1 The algebra Qf (U) is the quocient C-algebra

O(U) /Tf .

The polynomial subalgebra Qf [U ] is the image of the polynomial algebra
C[z1, . . . , zn]|U by the quocient map q : O(U) → Qf (U).

Suppose we have a holomorphic map germ f : (Cn, 0) → (Cn, 0) of finite
multiplicity µ at 0. Consider a holomorphic deformation fλ of f , λ ∈ Cm,
f0 = f .

Lemma 2.3.2 Let F : (Cn×Cm, 0) → (Cn×Cm, 0) be defined by F (z, λ) =
(fλ(z), λ). Then the C-algebras Qf and QF are isomorphic. Moreover, if
e1, . . . , eµ form a basis for Qf then, they also form a basis for QF .



2.3. RELATION BETWEEN I AND µ 47

Proof: Write F = (F1, . . . , Fn, λ1, . . . , λm) with Fj = fj λ. Then, the ideal
generated by the components of F is the same as the ideal J generated by
f1, . . . , fn, λ1, . . . , λn. But On×m /J ≈ On /Tf and thusQF ≈ Qf . Suppose
now that e1, . . . , en form a basis for the C-linear space Qf . Since QF ≈ Qf

these give also a basis for QF .
ut

Lemma 2.3.3 There exists a neighborhood U1 ⊂ Cn of 0 such that, for all
|λ| sufficiently small, the C-linear space generated by the images of e1, . . . , eµ

in the algebra Qfλ
(U1) contains the polynomial subalgebra Qfλ

[U1].

Proof: By lemma 2.2.19 we can find a neighborhood U1 × U2 ⊂ Cn ×Cm

of 0 and a neighborhood V ⊂ Cn×Cm of 0, which we may suppose convex,
with F (U1×U2) ⊂ V , such that every polynomial, when restricted to U1×U2,
can be written in the form

P (z) =
µ∑

j=1

gj(w, λ) ej(z), w = fλ(z).

By lemma 2.1.14 each gj has an expansion of the form

gj(w, λ) = Gj(λ) +
n∑

i=1

wi gj i(w, λ).

Substituting into the expression for P we get

P (z) =
µ∑

j=1

Gj(λ) ej(z) +
n∑

i=1

wi hi(z, λ), w = fλ(z).

Now,
n∑

i=1
fi λ(z) hi(z, λ) lies in the ideal Tfλ

(U1) provided |λ| is small enough

(require λ ∈ U2). The lemma is proved.
ut

With this at hand we have the

Proposition 2.3.4 Let f : (Cn, 0) → (Cn, 0) be a holomorphic map germ
of finite multiplicity µ at 0. Consider a holomorphic deformation fλ of f ,
λ ∈ Cm, f0 = f . There exists a neighborhood U ⊂ Cn of 0 such that, for |λ|
sufficiently small, the dimension of the C-linear space Qfλ

[U ] is at most µ.

Proof: By lemma 2.3.3, dimCQfλ
[U ] ≤ dimCQfλ

(U) and, by lemma
2.3.2, dimCQfλ

(U) ≤ µ.
ut
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Lemma 2.3.5 Suppose we have a holomorphic map f : U → Cn, U ⊂ Cn

a domain, such that dimCQf [U ] < ∞. Then, each zero of f in U has finite
multiplicity. Moreover, the number of solutions of the equation f = 0 in U
(counted without multiplicities) is bounded by dimCQf [U ].

Proof: Denote by ν the dimCQf [U ] and let ξ ∈ U be such that f(ξ) =
0. Let `i, i = 1, . . . , ν, be linear functions vanishing at ξ and consider
the ν + 1 functions, 1, `1, `1 `2,..., `1 `2 · · · `ν . If p is the quocient map
p : C[z1, . . . , zn]|U → Qf [U ] then, the classes p(1),..., p(`1 `2 · · · `ν) are
linearly dependent. By repeating the same argument as in the proof of
lemma 2.2.4, we conclude that there is an element u ∈ O(U), u(ξ) 6= 0, such
that u `1 `2 · · · `ν ∈ Tf (U). Then,

u−1 (u `1 `2 · · · `ν) = `1 `2 · · · `ν ∈ Tξ f .

We’ve shown that any collection of ν linear functions in Mξ n have their
product in Tξ f . Hence, Mν

ξ n ⊂ Tξ f and therefore

dimC Oξ /Tξ f ≤ dimC Oξ /Mν
ξ n < ∞.

This shows the first part of the lemma. Suppose now we had ν +1 solutions
in U of the equation f = 0, say ξ0, . . . , ξν . For each j = 0, . . . , ν choose a
polynomial Pj such that

Pj(ξi) =





1 , if i = j

0 , if i 6= j.

Consider a linear combination of the Pj satisfying:

c0 P0 + · · ·+ cν Pν = 0.

Evaluating at ξi gives ci = 0 and hence the classes p(Pj), 0 ≤ j ≤ ν, are
linearly independent in Qf [U ], which is an absurd.

ut
Consider a holomorphic map f : U → Cn, U ⊂ Cn a domain, and

suppose that ξ1, . . . , ξk are all the solutions of the equation f = 0 in U .
Look at its germs at the points ξ1, . . . , ξk and consider the corresponding
local algebras Qξi f . The sum

k⊕

i=1

Qξi f
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is called the multilocal algebra of f in U . We define a homomorphism of
C-algebras

ℵ : O(U) →
k⊕

i=1

Qξi f

as follows: given g ∈ O(U) take its germs at the points ξi, gξi , and look at
their images g̃ξi ∈ Qξi f . In other words, ℵ(g) = (g̃ξ1 , . . . , g̃ξk

).
Before exploiting ℵ we introduce some notation. Let g ∈ O(U) and

ξ ∈ U . The Taylor polynomial of degree ` of g at ξ is noted T `
ξ g.

Lemma 2.3.6 Given a finite number of distinct points in U , say ξ1, . . . , ξk,
and a polynomial Pi of degree di, centered at ξi, there exists a polynomial Q
such that T di

ξi
Q = Pi.

Proof: Let Q = Q0 + Q1 + · · ·+ QN , a sum of homogeneous polynomials
whose coefficients are to be determined. We first solve the system

Q(ξ1) = P1(ξ1)
...

Q(ξk) = Pk(ξk)
(?0)

which is possible if N is large enough. Next we have the systems

∂Q

∂zj
(ξ1) =

∂P1

∂zj
(ξ1)

...
∂Q

∂zj
(ξk) =

∂Pk

∂zj
(ξk)

(?1)

By enlarging N we can solve (?1) without interfering with the solution of
(?0). Continuing this way we obtain the polynomial Q.

ut
We have the

Lemma 2.3.7 Suppose dimCQf [U ] < ∞. Then

ℵ (C[z1, . . . , zn]|U ) =
k⊕

i=1

Qξi f .

Proof: By lemma 2.3.5 the number of solutions in U of the equation f = 0
is finite, say ξ1, . . . , ξk, and each solution ξi is of finite multiplicity µi. If
g ∈ O(U) then, g and its Taylor polynomial of degree µi at ξi, Tµi

ξi
g, are
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mapped into the same element of Qξi f . Choose a polynomial Q such that
Tµi

ξi
Q = Tµi

ξi
g (this possible by lemma 2.3.6). Then ℵ(Q) = ℵ(g) and the

lemma is proved.
ut

We can now prove the

Proposition 2.3.8 The number of solutions in U , counting multiplicities,
of the equation f = 0 is bounded by dimCQf [U ].

Proof: Write f = (f1, . . . , fn). Then ℵ(fj) = 0 and thus the ideal Tf (U) is
mapped to 0 by ℵ. We then have an induced homomorphism of C-algebras

ℵ̃ : Qf [U ] →
k⊕

i=1

Qξi f

which is surjective by the previous lemma 2.3.7. Hence,

dimCQf [U ] ≥
k∑

i=1

dimCQξi f .

ut

Proposition 2.3.9 Suppose f : (Cn, 0) → (Cn, 0) is a holomorphic map
germ such that µ0(f) < ∞. Then µ0(f) ≥ I 0 (f).

Proof: By theorem 2.2.11, 0 is isolated in f−1(0) and by proposition 2.1.15,
I 0 (f) is the number of solutions of the equation fλ = f −λ = 0, λ a regular
value of f with |λ| << 1, in a small neighborhood U of 0. By lemma 2.3.5

dimCQfλ
[U ] ≥ I 0 (f)

and by proposition 2.3.4, dimCQfλ
[U ] is finite and

µ0(f) ≥ dimCQfλ
[U ].

The proposition is proved.
ut

We finally have the

Theorem 2.3.10 Let f : (Cn, 0) → (Cn, 0) be a holomorphic map germ. If
µ0(f) is finite, then µ0(f) = I 0 (f).
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Proof: This is now a matter of putting together all bits and pieces we’ve
deduced so far. We start by considering a Pham map Υ[µ+1], where µ =
µ0(f). By proposition 2.2.10 the deformation Υ[µ+1]

λ = Υ[µ+1] + λ f , λ in a
small neighborhood of 0 in C, is A-equivalent to f .

By proposition 2.1.20

I 0 (Υ[µ+1]
λ ) = I 0 (f)

and by propositions 2.2.6 and 2.2.10

µ0(Υ
[µ+1]
λ ) = µ0(f).

We now exploit the properties of the Pham map and of its deformation.
Fix a ball Bε(0) and a value of the parameter λ in such a way that proposition
2.3.4 holds for Υ[µ+1]

λ . Let {ξi} be the solutions in Bε(0) of the equation
Υ[µ+1]

λ = 0.
By proposition 2.3.4,

µ0(Υ[µ+1]) ≥ dimCQΥ
[µ+1]
λ

[Bε(0)].

By proposition 2.3.8,

dimCQΥ
[µ+1]
λ

[Bε(0)] ≥
∑

i

µξi(Υ
[µ+1]
λ ).

By proposition 2.3.9,

µξi(Υ
[µ+1]
λ ) ≥ I ξi (Υ[µ+1]

λ ).

By theorem 2.1.17,

∑

i

I ξi (Υ[µ+1]
λ ) = deg

Υ[µ+1]
λ

|Υ[µ+1]
λ |

where this last map is restricted to the sphere ∂Bε(0).
By theorem 2.1.18,

deg
Υ[µ+1]

λ

|Υ[µ+1]
λ |

= deg
Υ[µ+1]

|Υ[µ+1]| = I 0 (Υ[µ+1])

By lemma 2.2.9,
I 0 (Υ[µ+1]) = µ0(Υ[µ+1]).
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It follows that
∑

i

µξi(Υ
[µ+1]
λ ) =

∑

i

I ξi (Υ[µ+1]
λ ).

Since all terms involved are positive and

µξi
(Υ[µ+1]

λ ) ≥ I ξi
(Υ[µ+1]

λ ),

we conclude
µξi(Υ

[µ+1]
λ ) = I ξi (Υ[µ+1]

λ ) ∀ i.

But 0 is one of the solutions ξi of the equation Υ[µ+1]
λ = 0 and thus

µ0(f) = µ0(Υ
[µ+1]
λ ) = I 0 (Υ[µ+1]

λ ) = I 0 (f).

The theorem is proved.
ut



Chapter 3

Grothendieck residues

In this chapter we introduce the concept of point residue due to A.
Grothendieck. It embodies the Poincaré Hopf index, the Milnor number,
the intersection number of n divisors in Cn, which intersect properly, and
has many uses in deep results such as the Baum-Bott theorem, which is a
generalization of both the Poincaré Hopf theorem and the Gauss Bonnet
theorem in the complex realm. We hope the reader will appreciate such a
mathematical construction.

3.1 The Trace map

In this section we prove the Trace theorem, which is a basic result in
the understanding of point residues and has its origins in a theorem of Abel.
The reference for it is the work of P. Griffiths in [Gr]. The reader is assumed
to have some familiarity with differential forms.

We start by looking at a holomorphic map f : U ⊂ Cn → Cn, f(0) = 0,
with finite multiplicity µ at 0. By theorems 2.1.18 and 2.3.10 we see that f
satisfies the following property: there is a connected open neighborhood V of
0 such that, for ζ ∈ V , f−1(ζ) is a finite set and the sum of the multiplicities

∑

ξ∈f−1(ζ)

µξ(f − ζ) = µ

Redefining U = f−1(V ) we have that f : U → V satisfies:
(i) f is surjective.

(ii) f is open.

(iii) f is proper.

53
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(iv) for ζ ∈ V , f−1(ζ) is a finite set and the sum of the multiplicities of the
zeros of the map f − ζ is constant throughout V .

Such a map is called a finite map. This is equivalent to saying that
f : U → V is a ramified holomorphic covering of degree µ.

Let f : U → V be as above and η a holomorphic n-form on U , η =
g(z) dz1 ∧ · · · ∧ dzn, g ∈ O(U).

Definition 3.1.1 The trace or push forward of η by f , noted f!(η), is the
holomorphic n-form defined on the open set Vreg ⊂ V of regular values of f ,
obtained by the following procedure:

Let ζ be a regular value of f and f−1(ζ) = {ξ1, . . . , ξµ}. Given an n-
vector

(v1, . . . , vn) ∈ Cn × · · · ×Cn

︸ ︷︷ ︸
n factors

,

for each component vj ∈ Cn there is a unique vector ui j ∈ Cn such that
vj = f ′(ξi).ui j. Set

f!(η) ζ .(v1, . . . , vn) =
µ∑

i=1

η ξi .(ui 1, . . . , ui n).

This amounts to do the following: if ζ is a regular value of f and f−1(ζ) =
{ξ1, . . . , ξµ}, then there is a neighborhood Vζ of ζ and neighborhoods Uξi of
ξi such that f|Uξi

: Uξi → Vζ is a biholomorphism. Let f−1
i denote the

inverse maps (f|Uξi
)−1. Then

f!(η) |Vζ
=

µ∑

i=1

(f−1
i )∗ η |Uξi

.

Let us derive a local expression for f!(η). In the target V we take coor-
dinates w = (w1, . . . , wn), write f = (f1, . . . , fn),

η = g(z) dz1 ∧ · · · ∧ dzn

and
f!(η) = tr(w) dw1 ∧ · · · ∧ dwn.

If f|Uξi
: Uξi → Vζ is as above we take coordinates (f1, . . . , fn) in Uξi .

Denoting by gi df1 ∧ · · · ∧ dfn the expression of η in these coordinates we
have that, for p ∈ Uξi ,

(η |Uξi
)p = gi(f1(p), . . . , fn(p)) (df1)p ∧ · · · ∧ (dfn)p.
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Now, if {(e1)p, . . . , (en)p} is the basis dual to {(df1)p, . . . , (dfn)p} then,

(η |Uξi
)p.((e1)p, . . . , (en)p) = gi(f1(p), . . . , fn(p))

and hence

tr|Vζ
(w) =

µ∑

i=1

gi(w).

Remark 4 In Uξi ,

gi =
g

detJf
where Jf =

(
∂fi

∂zj

)

1≤i,j≤n

.

We’ve shown that the function

tr(η) : Vreg → C

is holomorphic. The Trace theorem asserts that this function admits a
holomorphic extension to an open neighborhood of 0 in V . There are two
proofs of this fact, one makes use of Remmert’s theorem and of Hartogs’
extension theorem (see [Gr]) and the other, given in [A-V-GZ], uses Cauchy’s
integral formula and hence exhibits an integral representation of tr(η). We
follow this last one since it will be very useful in the definition of the residue.
But before the proof we need some topological preliminaries (see [D-N-F]).

Consider the maps

|f | : U −→ Rn

|f |(z) = (|f1(z)|, . . . , |fn(z)|)

and

|f − w| : U −→ Rn, w ∈ V

|f − w|(z) = (|f1(z)− w1|, . . . , |fn(z)− wn|)
Let D(0, ε) be a polydisc of multiradius ε = (ε1, . . . , εn), centered at 0 ∈ V
and Tε its distinguished boundary |w1| = ε1, . . . , |wn| = εn. Set Γε =
|f |−1(ε). Γε is a compact real n-cycle in U , which is also a smooth submani-
fold of U if we take ε a regular value of |f |. We have as coordinate functions
for Γε, in an open dense set of Γε, the arguments arg fi and, from now on,
we adopt as orientation for Γε the one determined by d arg f1∧· · ·∧d arg fn.
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Fix w ∈ V and let ρ = (ρ1, . . . , ρn), ρi > 0, be a regular value of the map
|f − w|. Then,

Γw, ρ = {z ∈ U : |f1(z)− w1| = ρ1, . . . , |fn(z)− wn| = ρn} ⊂ U

is a smooth real submanifold of dimension n. The orientation for Γw, ρ is
obtained in the same way as that for Γε.

Now let ζ be a regular value of f and f−1(ζ) = {ξ1, . . . , ξµ}. By choosing
ρ sufficiently small so that the torus

{u ∈ V : |u1 − ζ1| = ρ1, . . . , |un − ζn| = ρn}
is contained in Vζ we have that Γζ, ρ consists of precisely µ tori Tζ i, cor-
responding to ξi. Consider the meromorphic n-form on U , depending on
w ∈ V ,

ηw =
η

n∏
j=1

(fj − wj)
.

Lemma 3.1.2 Let ζ be a regular value of f . There exists a neighborhood
Wζ ⊂ Vζ of ζ such that, for w ∈ Wζ ,

tr(η)(w) =
(

1
2πi

)n ∫

Γw, ρ

ηw.

Proof: Choose Wζ in such a way that Γw, ρ ⊂ f−1(Vζ). We’ve seen that,

in Vζ , the local expression of tr(η) is
µ∑

i=1
gi(w). Now, by Cauchy’s integral

formula

gi(w) =
(

1
2πi

)n ∫

Tw i

gi(f1, . . . , fn) df1 ∧ · · · ∧ dfn
n∏

j=1
(fj − wj)

and thus
tr(η)(w) =

(
1

2πi

)n µ∑

i=1

∫

Tw i

gi(f1, . . . , fn) df1 ∧ · · · ∧ dfn
n∏

j=1
(fj − wj)

=

(
1

2πi

)n ∫

Γw, ρ

ηw.
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ut
Lemma 3.1.3 Let ζ be a regular value of f sufficiently close to 0 ∈ V
and ρ appropiately small. Then the cycles Γε and Γζ, ρ are homologous in
U \ f−1(ζ) and so [Γε] = [Γζ, ρ] ∈ Hn(U \ f−1(ζ);Z).

Proof: The map F (z, t) = |f − tζ|, 0 ≤ t ≤ 1, induces a smooth homotopy
Γtζ, ε between Γε = Γ0, ε and Γζ, ε, provided |ζ| << 1. On the other hand, for
ρ sufficiently small, Γt = Γζ, tρ+ε exhibits a smooth homotopy between Γζ, ε

and Γζ, ρ+ε. Now consider the map G(z, t) = |f − ζ| − tε. If ρ is a regular
value of G such that Γζ, ρ consists of µ tori, then G−1(ρ) is a submanifold
∆ of real dimension n + 1 of U ×R . The projection π : U ×R → U sends
∆ ∩ (U × [0, 1]) over an n+1-cycle whose boundary is Γζ, ε+ρ ∪ Γζ, ρ. Thus,
Γζ, ε+ρ is homologous to Γζ, ρ. Since the homotopies above are smooth, we
have that Γε is homologous to Γζ, ρ. Noticing that all the procedures were
carried out in U \ f−1(ζ) we have the assertion of the lemma.

ut
We then have the

Theorem 3.1.4 (Trace theorem) The holomorphic function

tr(η) : Vreg → C

admits a holomorphic extension to an open neighborhood of 0 in V .

Proof: We will show that if ε is a regular value of the map |f |, sufficiently
close to 0 and such that both D(0, ε) and Tε are contained in V then, for
w ∈ D(0, ε), the function

Ψ(w) =
(

1
2πi

)n ∫

Γε

η
n∏

j=1
(fj − wj)

is the desired extension of tr(η). Write η = g(z) dz1 ∧ · · · ∧ dzn. Then

Ψ(w) =
(

1
2πi

)n ∫

Γε

g(z) dz1 ∧ · · · ∧ dzn
n∏

j=1
(fj − wj)

is holomorphic for w ∈ D(0, ε). Let ζ be a regular value of f and ρ small
enough so that lemmas 3.1.2 and 3.1.3 hold. Then,

tr(η)(w) =
(

1
2πi

)n ∫

Γw, ρ

ηw
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in a small neighborhood of Wζ contained in D(0, ε) by 3.1.2. By 3.1.3,

tr(η)(w) =
(

1
2πi

)n ∫

Γw, ρ

ηw =
(

1
2πi

)n ∫

Γε

ηw = Ψ(w)

in Wζ . The theorem is proved.
ut

3.2 The Residue

Let f = (f1, . . . , fn) : U → V be a finite holomorphic map of multiplicity
µ and g ∈ O(U). Suppose ζ is a regular value of f and let f−1(ζ) =
{ξ1, . . . , ξµ}.

Consider the sum
µ∑

i=1

g(ξi)
det Jf(ξi)

where

Jf(ξi) =

(
∂fi

∂zj
(ξi)

)

1≤i,j≤n

.

Definition 3.2.1 The residue at 0 of g relative to f is the limit

Res 0(g, f) = lim
ζ→0

µ∑

i=1

g(ξi)
det Jf(ξi)

.

Of course we must show the limit exists. This is a job for the Trace
theorem 3.1.4.

Theorem 3.2.2 Let ε = (ε1, . . . , εn), εi > 0, and consider the real n-cycle
Γε = {z ∈ U : |fi(z)| = εi, 1 ≤ i ≤ n} with orientation prescribed by the
n-form d arg f1 ∧ · · · ∧ d arg fn. If ε is sufficiently close to 0 then,

Res 0(g, f) =
(

1
2πi

)n ∫

Γε

g dz1 ∧ · · · ∧ dzn

f1 · · · fn
.

Proof: Consider the holomorphic n-form η = g dz1 ∧ · · · ∧ dzn. In an open
and dense subset of U we have

g dz1 ∧ · · · ∧ dzn =
g

detJf
df1 ∧ · · · ∧ dfn



3.2. THE RESIDUE 59

and, due to the manner in which the cycle Γε is oriented,
(

1
2πi

)n ∫

Γε

g dz1 ∧ · · · ∧ dzn

f1 · · · fn
=

(
1

2πi

)n ∫

Γε

g

detJf

df1 ∧ · · · ∧ dfn

f1 · · · fn

Over the open and dense set of regular values of f , the trace of the form
η is, by remark 4,

tr(η)(w) =
µ∑

i=1

g(f−1
i (w))

detJf(f−1
i (w))

.

By theorem 3.1.4,

tr(η)(w) =
(

1
2πi

)n ∫

Γε

g dz1 ∧ · · · ∧ dzn
n∏

j=1
(fj − wj)

.

It follows that

lim
w→0

tr(η)(w) =
(

1
2πi

)n ∫

Γε

g dz1 ∧ · · · ∧ dzn

f1 · · · fn
.

ut

Exercise 4 Show that, when n = 1 this reduces to the classical residue for
meromorphic functions, introduced by Cauchy.

Properties of the Residue

Property 1 If a, b ∈ C and g, h ∈ O(U) then,

Res 0(ag + bh, f) = aRes 0(g, f) + b Res 0(h, f).

Moreover, Res 0(g, f) is alternating in the components f1, . . . , fn of f due
to the orientation prescribed for the cycle Γε.

Property 2 Res 0(detJf, f) = µ0(f) = I 0 (f).

To see this simply note that, if ζ is a regular value of f and f−1(ζ) =

{ξ1, . . . , ξµ}, then the sum
µ∑

i=1

det Jf(ξi)
det Jf(ξi)

is constant and equal to µ0(f).

Hence,

Res 0(detJf, f) = lim
ζ→0

µ∑

i=1

det Jf(ξi)
det Jf(ξi)

= µ0(f).
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Property 3 If f is a biholomorphism, then

Res 0(g, f) =
g(0)

detJf(0)
.

In this case every point ζ in V is a regular value of f and f−1(ζ) = {ξ}.
Thus,

Res 0(g, f) = lim
ζ→0

g(ξ)
det Jf(ξ)

= lim
ξ→0

g(ξ)
detJf(ξ)

=
g(0)

detJf(0)
.

Property 4 If g ∈ Tf , then Res 0(g, f) = 0.

Write g = h1f1+· · ·+hnfn. By property 1 it’s enough to show Res 0(h1f1, f) =
0. Look at the n-form

ω =
h1f1 dz1 ∧ · · · ∧ dzn

f1 · · · fn
=

h1 dz1 ∧ · · · ∧ dzn

f2 · · · fn
.

Let Di = {z ∈ U : fi(z) = 0}. ω is holomorphic in the open set U ′ =
U \ (D2∪· · ·∪Dn) ⊃ U \ (D1∪· · ·∪Dn). The chain ∆ε = {z ∈ U : |f1(z)| ≤
ε1, |fi(z)| = εi, 2 ≤ i ≤ n} is contained in U ′ and ∂∆ε = ±Γε. By Stokes
theorem

Res 0(h1f1, f) =
∫

Γε

ω = ±
∫

∆ε

dω = 0.

We then have

Theorem 3.2.3 det Jf 6∈ Tf .

Proof: By property 2, Res 0(detJf, f) = µ0(f) 6= 0. Hence, by property
4, detJf 6∈ Tf .

ut

Exercise 5 Show that, if µ0(f) = 1 then f is a biholomorphism.

Property 5 (Transformation law) Suppose g : U → V is a holomorphic
map with g−1(0) = {0} and that g(z) = A(z)f(z), where A(z) = (ai j(z)) is
a matrix with holomorphic entries. Then,

Res 0(h, f) = Res 0(hdet A, g).
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The condition g(z) = A(z)f(z) tells us that Tg ⊆ Tf . We start by prov-
ing the transformation law in case f and g are A-equivalent, so Tf = Tg.
Consider the holomorphic deformation fλ = f − λ and the corresponding
deformation of g, gλ = A(z)fλ. By shrinking V , if necessary, we have that
gλ and f − λ have the same zeros ξ1, . . . , ξµ, for λ a regular value of f . At
each point ξi, Jgλ(ξi) = A(ξi) · Jf(ξi). Hence,

det Jgλ(ξi) = detA(ξi) · det Jf(ξi)

and so
µ∑

i=1

h(ξi)
det Jf(ξi)

=
µ∑

i=1

h(ξi) detA(ξi)
det Jgλ(ξi)

,

which gives

Res 0(h, f) = lim
λ→0

µ∑

i=1

h(ξi)
det Jf(ξi)

=

lim
λ→0

µ∑

i=1

h(ξi) det A(ξi)
detJgλ(ξi)

= Res 0(h detA, g).

Now for the general case. Choose a smooth family of holomorphic
matrices At(z) with A0(z) = A(z) and detAt(0) 6= 0 for t 6= 0. Put
gt(z) = At(z)f(z). Then, for t 6= 0, gt and f are A-equivalent and by
the previous case

Res 0(h, f) = Res 0(hdetAt, gt) , ∀ t 6= 0.

But
Res 0(hdet At, gt) =

(
1

2πi

)n ∫

Γt ε

h detAt dz1 ∧ · · · ∧ dzn

gt 1 · · · gt n

where the n-cycle Γt ε = {z : |gt(z)| = ε}. By choosing ε a regular value of
|g| = |g0|, we have that Γ0 ε is a smooth manifold and that ε is a regular
value of |gt| for |t| << 1. Hence, Γt ε can be realized as a small deformation
of the zero section Γ0 ε in a tubular neighborhood of Γ0 ε. It follows that Γ0 ε

and Γt ε are homologous and thus
(

1
2πi

)n ∫

Γt ε

hdetAt dz1 ∧ · · · ∧ dzn

gt 1 · · · gt n
=

(
1

2πi

)n ∫

Γ0 ε

hdet At dz1 ∧ · · · ∧ dzn

gt 1 · · · gt n
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so that
Res 0(h, f) = lim

t→0
Res 0(hdetAt, gt) =

lim
t→0

(
1

2πi

)n ∫

Γ0 ε

hdet At dz1 ∧ · · · ∧ dzn

gt 1 · · · gt n
= Res 0(hdetA, g).

3.3 Local duality

This is perhaps the most interesting property of the residue and deserves
a special treatment. Let f : U → V , f−1(0) = {0}, be as before and
consider its local algebra Qf at 0 ∈ Cn. By property 1, Res 0(g, f) is linear
in g and, by property 4, Res 0(g, f) depends only on the class g̃ of g in Qf .
Moreover, by theorem 3.2.3, the class of detJf defines a nonzero element of
Qf . Therefore, the residue induces a C-linear functional,

Res 0 f : Qf −→ C

g̃ 7−→ Res 0(g, f)

which in turn induces a C-bilinear form
B0 f : Qf ×Qf −→ C

(g̃, h̃) 7−→ Res 0 f (g̃ h̃).

We now present the Local duality theorem. For a smooth version of this
result we refer the reader to [E-L].

Theorem 3.3.1 (Local duality) The bilinear form

B0 f : Qf ×Qf −→ C

is nondegenerate.

Proof: (we follow [G-H]) This assertion can be rephrased as: if Res 0(g h, f) =
0 for all h ∈ O0 n, then g ∈ Tf . Also, the fact that the map germ f is fi-
nite is equivalent to the following property of its components: the germs
f1, . . . , fn ∈ O0 n form a regular sequence (see [Gu]). This means that

fi is not a zero divisor in O0 n/〈f1, . . . , fi−1〉O0 n , 1 ≤ i ≤ n.

By Hilbert’s zero-theorem we know that there exist m1, . . . ,mn such that
zmi
i ∈ Tf , 1 ≤ i ≤ n. Consider then the Pham map

Υ(z) = (zm1+1
1 , . . . , zmn+1

n ).
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Lemma 3.3.2 B0 Υ is nondegenerate.

Proof: This is done by direct calculation. Suppose

h(z) = zj1
1 · · · zjn

n

and expand g in power series

g(z) =
∑

αi1...in zi1
1 · · · zin

n .

Then,

Res 0(g h, Υ) =
(

1
2πi

)n ∫

Γε

h g dz1 ∧ · · · ∧ dzn

zm1+1
1 · · · zmn+1

n
=

(
1

2πi

)n ∑

i1...in

αi1...in

∫

Γε

zi1+j1
1 · · · zin+jn

n dz1 ∧ · · · ∧ dzn

zm1+1
1 · · · zmn+1

n
=

(
1

2πi

)n ∑

i1...in

αi1...in

∫

Γε

dz1 ∧ · · · ∧ dzn

zm1+1−i1−j1
1 · · · zmn+1−in−jn

n

.

Noticing that Γε = {z : |z1| = ε1, . . . , |zn| = εn} is just a n-torus we have,
by Cauchy’s integral formula,

(
1

2πi

)n ∑

i1...in

αi1...in

∫

Γε

dz1 ∧ · · · ∧ dzn

zm1+1−i1−j1
1 · · · zmn+1−in−jn

n

=

αm1−j1,...,mn−jn .

Hence, to say that Res 0(g h,Υ) = 0 for all h is the same as to say
that αi1...in = 0 for 0 ≤ i1 ≤ m1, . . . , 0 ≤ in ≤ mn. We conclude g ∈
〈zm1+1

1 , . . . , zmn+1
n 〉O0 n ⊂ Tf .

ut
Lemma 3.3.3 Let ϕ ∈ O0 n be such that:
(i)The map Φ = (ϕ, f2, . . . , fn) satisfies Φ−1(0) = {0}, where f = (f1, . . . , fn).
(ii) ϕ ∈ Tf , so that TΦ ⊂ Tf .

If B0Φ is nondegenerate, then B0 f is also nondegenerate.

Proof: Write ϕ =
n∑

i=1
ai fi, so that




ϕ
f2
...

fn


 =




a1 a2 . . . an

0 1 . . . 0
...

...
. . .

0 0 . . . 1







f1

f2
...

fn






64 CHAPTER 3. GROTHENDIECK RESIDUES

Given g =
n∑

i=1
bi fi ∈ Tf we have

a1 g = b1

(
n∑

i=1
ai fi

)
+

∑
i≥2

(a1bi − b1ai) fi =

b1 ϕ +
∑
i≥2

(a1bi − b1ai) fi ∈ TΦ

and thus we have morphisms in both directions,

ψ : O0 n /Tf −→ O0 n /TΦ

induced by multiplication by a1, and the natural projection

π : O0 n /TΦ −→ O0 n /Tf .

Since det




a1 a2 . . . an

0 1 . . . 0
...

...
. . .

0 0 . . . 1


 = a1 we have, by the Transformation Law

(property 5),

B0 f (g̃, h̃) = B0Φ(ã1 g, h̃) ∀ g, h ∈ O0 n.

If B0 f (g̃, h̃) = 0 for all h, then Res 0((a1 g) h,Φ) = 0 for all h and, by
hypothesis, a1 g ∈ TΦ. Write

a1 g = c1ϕ +
∑

i≥2

ci fi = a1 c1 f1 +
∑

i≥2

(c1ai + ci)fi.

It follows that

a1 ( g − c1 f1) ≡ 0 mod 〈f2, . . . , fn〉O0 n .

We have then two possibilities: either g − c1 f1 ∈ 〈f2, . . . , fn〉O0 n or
a1 is a zero divisor in O0 n / 〈f2, . . . , fn〉O0 n . If a1 is a zero divisor, then
so is a1 f1 and the same holds for ϕ = a1 f1 + (a2 f2 + · · · + an fn). But
this is impossible since ϕ, f2, . . . , fn is a regular sequence. We are left with
g − c1 f1 ∈ 〈f2, . . . , fn〉O0 n and thus g ∈ Tf .

ut
Now for the proof of the theorem. The fact that f1, f2, . . . , fn form a

regular sequence is equivalent to the following geometric fact: choose any k
distinct integers in {1, . . . , n} and look at the map

φ(z) = (fj1(z), fj2(z), . . . , fjk
(z)).
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Then, the set W = φ−1(0) is a subvariety of Cn of dimension n− k, that is,
Wreg, which is the set of points in W at which the derivative φ′(z) attains
its maximal rank, is a complex manifold of dimension n− k.

With this at hand we do as follows: consider the map F1 = (f2, . . . , fn).
The variety F−1

1 (0) is an analytic curve through the origin in Cn. Choose
a hyperplane H1, passing through 0, such that {H1 = 0} ∩ F−1

1 (0) = {0}.
Change coordinates in Cn by setting H1 = z1. Then the map

Ψ1 = (zm1+1
1 , f2, . . . , fn), m1 ≥ 0,

is a finite map.
By repeating this procedure with the map Ψ1 and so on, we obtain finite

maps

Ψj = (zm1+1
1 , zm2+1

2 , . . . , z
mj+1
j , fj+1, . . . , fn), m1, . . . , mj ≥ 0.

Remark that Ψ0 = f and Ψn = Υ. Invoking Hilbert’s zero-theorem we
choose m1, . . . , mn such that z

mj

j ∈ TΨj−1 .
By lemma 3.3.2, B0Υ is nondegenerate and hence, by lemma 3.3.3,

B0Ψn−1 is also nondegenerate. Repeated application of lemma 3.3.3 give
B0 f nondegenerate. The theorem is proved.

ut
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Chapter 4

Residues and Kernels

In this chapter we will introduce the Bochner-Martinelli kernel, show
that it provides a generalization of Cauchy’s integral formula and, after, we
indicate how the point residue can be seen through this kernel.

4.1 Complex valued differential forms

Let U be a domain in Cn. Recall the notations of section 2.1.2: we
identify Cn ≈ R2n by

(z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) ≈ (x1, y1, . . . , xn, yn)

and consider the complexified of R2n, R2n⊗C. We have the following bases
of R2n ⊗C:

B1 =
{

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn
,

∂

∂yn

}

and

B3 =
{

∂

∂z1
, . . . ,

∂

∂zn
,

∂

∂z̄1
, . . . ,

∂

∂z̄n

}
.

We observe that B3 induces a decomposition of R2n⊗C as a direct sum
of complex n-dimensional subspaces,

R2n ⊗C = V ⊕V

where

V =
〈

∂

∂z1
, . . . ,

∂

∂zn

〉

|C
, V =

〈
∂

∂z̄1
, . . . ,

∂

∂z̄n

〉

|C

67
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At each point ξ ∈ U , the tangent space TξR2n ≈ R2n has as basis
(defining the canonical orientation)

{
∂

∂x1
(ξ),

∂

∂y1
(ξ), . . . ,

∂

∂xn
(ξ),

∂

∂yn
(ξ)

}

with dual basis {dx1ξ, dy1ξ, . . . , dxnξ, dynξ}. Hence, with the identification
Cn ≈ R2n, the complexified tangent space T C

ξ C
n ≈ R2n ⊗ C admits the

decomposition
T C

ξ Cn = Vξ ⊕Vξ

where

Vξ =
〈

∂

∂z1
(ξ), . . . ,

∂

∂zn
(ξ)

〉

|C
, Vξ =

〈
∂

∂z̄1
(ξ), . . . ,

∂

∂z̄n
(ξ)

〉

|C

with the corresponding dual bases

V̌ξ = 〈dz1ξ, . . . , dznξ〉|C, V̌ξ = 〈dz̄1ξ, . . . , dz̄nξ〉|C.
A C∞ p-form ω on U is given by a sum of terms of the types fIdxI ,

gJdyJ and hKd(x, y)K , where dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxip , dyJ = dyj1 ∧
dyj2 ∧ · · · ∧ dyjp , d(x, y)K is a product of p-forms of types dxi and dyj , and
fI , gJ , hK are smooth complex valued functions.

Now, dxi = (1/2)(dzi + dz̄i) and dyi = (1/2i)(dzi − dz̄i). Expressing the
terms in ω by using dzi and dz̄i we arrive at

ω =
∑

ki1,...,ir,j1,...,jsdzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js ,

which we abbreviate as ω =
∑

kI,J dzI ∧ dz̄J . We say that each term of this
sum is a p-form of type (r, s), r + s = p. It follows that a p-form ω has a
unique expression as a sum

ω = ω(p,0) + ω(p−1,1) + · · ·+ ω(0,p),

where ω(r,s) is of type (r, s).
Let a0(U) be the C-algebra C∞(U,C) and ap(U) the a0(U)-module of

C∞ complex p-forms on U . The decomposition above induces a decompo-
sition

ap(U) = a(p,0)(U)⊕a(p−1,1)(U)⊕ · · · ⊕a(0,p)(U).

We have the exterior differential d : ap(U) → ap+1(U) (see [Lima2]).
For f ∈ a0(U), using the derivations defined in section 2.1.2, we have

df =
n∑

i=1

∂f

∂zi
dzi +

n∑

i=1

∂f

∂z̄i
dz̄i.
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Define, on the level of functions,

∂f =
n∑

i=1

∂f

∂zi
dzi and ∂f =

n∑

i=1

∂f

∂z̄i
dz̄i. (1)

On the level of forms, if

ω(r,s) =
∑

ki1,...,ir,j1,...,jsdzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js ,

we let

∂ω(r,s) =
∑

∂ki1,...,ir,j1,...,js ∧ dzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js (2)

a form of type (r + 1, s) and

∂ω(r,s) =
∑

∂ki1,...,ir,j1,...,js ∧ dzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js (3)

of type (r, s + 1). We are left with

dω(r,s) = ∂ω(r,s) + ∂ω(r,s). (4)

For an arbitrary p-form ω =
∑

r+s=p
ω(r,s), we put

∂ω =
∑

r+s=p

∂ω(r,s) and ∂ω =
∑

r+s=p

∂ω(r,s). (5)

It follows that d = ∂ + ∂ and the following properties hold (exercise):

∂(ωp ∧ η) = ∂ωp ∧ η + (−1)pωp ∧ ∂η,

∂(ωp ∧ η) = ∂ωp ∧ η + (−1)pωp ∧ ∂η.

Moreover, (exercise)

∂∂ω(r,s) + ∂∂ω(r,s) + ∂∂ω(r,s) + ∂ ∂ω(r,s) = ddω(r,s) = 0.

By comparing the form types in the above summation we conclude that

∂2 = ∂ ∂ = 0 , ∂ ∂ + ∂ ∂ = 0 , ∂
2 = ∂ ∂ = 0. (6)

A (p, 0)-form ω(p,0) =
∑

fi1,...,ipdzi1 ∧ · · · ∧ dzip is holomorphic if the
coefficients fi1,...,ip are holomorphic functions. In this case,

∂ω =
∑

∂fi1,...,ip ∧ dzi1 ∧ · · · ∧ dzip = 0.

Conversely, if ∂ω(p,0) = 0, then ω has holomorphic coefficients. For
holomorphic forms we have ∂ω = dω.
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4.2 Volume forms and the Hodge ∗-operator

With the identification Cn ≈ R2n, the usual inner product on R2n ex-
tends to a Hermitian product on T C

ξ C
n,

< av, bw >ξ= a b̄ < v,w >ξ, a, b ∈ C, v, w ∈ T C
ξ Cn. (7)

The basis
{

∂

∂z1
(ξ), . . . ,

∂

∂zn
(ξ),

∂

∂z̄1
(ξ), . . . ,

∂

∂z̄n
(ξ)

}

is orthogonal and
〈

∂

∂zi
,

∂

∂zi

〉

ξ
=

〈
∂

∂z̄i
,

∂

∂z̄i

〉

ξ
=

1
2

(8)

for 1 ≤ i ≤ n (exercise). It follows that the decomposition

T C
ξ Cn = Vξ ⊕Vξ

is orthogonal.
On the other hand, this Hermitian product induces naturally a Hermitian

inner product on the algebra of complex valued forms at a point ξ, which is
characterized by the property that: if {v1, . . . , v2n} is a basis for T C

ξ C
n and

{u1, . . . , u2n} is its dual basis, then

uj1 ∧ · · · ∧ ujr , 1 ≤ j1 < · · · < jr ≤ 2n, 1 ≤ r ≤ 2n

is ortonormal. It follows that two forms of different bidegree are orthogonal
and, for two (r, s)-forms ω =

∑
aI,J dzI ∧ dz̄J and η =

∑
bI,J dzI ∧ dz̄J ,

< ω, η >ξ = 2r+s
∑

I,J

aI,J(ξ) b̄I,J(ξ). (9)

The factor 2r+s is because

< dzi, dzi >ξ =< dz̄i, dz̄i >ξ = 2, 1 ≤ i ≤ n, (10)

since the dual basis satisfies (8). The norm of ω at ξ is defined by

|ω|ξ =
√

< ω, ω >ξ. (11)

A volume form dV on U is a real, continuous 2n-form on U with |dV|ξ =
1, for all ξ ∈ U . Such a form clearly defines an orientation of U (see [Lima1])
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and conversely, if U is oriented, then there is a unique volume form on U
which defines this orientation. In R2n ≈ Cn the volume form is

dV = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. (12)

This translates into

dV =
(

i

2

)n

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n. (13)

We leave to the reader, as an exercise, to show that equivalently,

dV =





1
n!

ςn, where ς =
i

2

n∑

i=1

dzi ∧ dz̄i

(−1)n(n−1)/2

(2i)n dz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn.

(13 bis)

The volume of U is, by definition, vol(U) =
∫
U dV.

Consider now continuous differential forms on U with compact support.
We have a Hermitian inner product defined by:

< ω, η >U =
∫

U

< ω, η >ξ dV. (14)

The associated norm is

|ω|L2 =
√

< ω, ω >U . (15)

Suppose now that X ⊂ RN is a manifold of dimension N with boundary
∂X. The inner product in RN induces, by restriction, an inner product in
Tξ∂X ⊂ TξX. We have then a unique volume element on ∂X, dS, which
defines the induced orientation of ∂X. As before, the integral of a function g
along ∂X is

∫
∂X g dS and the volume of ∂X is

∫
∂X dS (this is not as obvious

as in the case of a domain U . Here we must use the Riesz representation
theorem which states that there is a unique positive Borel measure ν on ∂X,
such that

∫
∂X g dS =

∫
∂X g dν, g compactly supported).

Let i : ∂X → RN be the inclusion map. If f is a defining function for X
in a neighborhood of ξ ∈ ∂X such that |df |ξ = 1 then, by choosing N − 1
continuous real 1-forms η2, . . . , ηN in such a way that

{dfξ, η2ξ, . . . , ηN ξ}
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is a positively oriented orthonormal basis of the cotangent space ŤξRN , we
have that

dS = i∗(η2 ∧ · · · ∧ ηN ). (16)

We are now ready to introduce the Hodge ∗-operator. First some nota-
tions. Consider the set {1, . . . , N}. If A ⊂ {1, . . . , N} we let |A| denote its
cardinality and A′ = {1, . . . , N} \A, with the order induced by the order of
{1, . . . , N}. Given A, B ⊂ {1, . . . , N} we let

δA
B =





sgnσ, if A = B as sets and σ is a permutation
taking A onto B.

0, in all other cases.
(17)

Exercise 6 Show that δA
B = δB

A , δA
C = δA

B δB
C , δAB

BA = (−1)rs where |A| = r,
|B| = s.

Theorem 4.2.1 Let dV be a volume form for the domain U ⊂ Cn. There
exists a unique operator

∗ : ap(U) −→ a2n−p(U)

satisfying:
∗(aωξ + bηξ) = a(∗ωξ) + b(∗ηξ), a, b ∈ C. (18)

that is, ∗ is C-linear.
∗ is real, ∗ω = ∗ω. (19)

∗ ∗ ω = (−1)(2n−p)pω, ω ∈ ap(U). (20)

∗1 = dVξ , ∗dVξ = 1. (21)

ωξ ∧ ∗η̄ξ =< ω, η >ξ dVξ. (22)

Proof: Choose an orthonormal basis {u1, . . . , u2n} for Ť C
ξ C

n such that
u1 ∧ · · · ∧ u2n = dVξ. Let uJ = uj1 ∧ · · · ∧ ujp .

By linearity, it’s enough to show that the properties above determine ∗uJ

for each p-tuple J ⊂ {1, . . . , 2n}. By (21) it is only necessary to consider 1 ≤
p ≤ 2n−1. By (18), ∗uJ is a (2n-p)-form and thus ∗ūJ =

∑
|K|=2n−p aK uK ,

with aK ∈ C and the sum extends over all strictly increasing (2n-p)-tuples
K ⊂ {1, . . . , 2n}. For one fixed such K we have

uK′ ∧ ∗ūJ = aK uK′ ∧ uK = aK δK′K
{1,...,2n} dVξ. (23)

By (22),
uK′ ∧ ∗ūJ =< uK′ , uJ > dVξ = δJ

K′ dVξ. (24)
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(23) and (24) give aK = δJ
K′ δK′K

{1,...,2n} = δJ K
{1,...,2n} and we’ve discovered the

face of ∗:
∗uJ = δJ J ′

{1,...,2n} ūJ ′ . (25)

This shows uniqueness.
For the existence, choose any orthonormal basis {u1, . . . , u2n} for Ť C

ξ C
n

such that u1∧· · ·∧u2n = dVξ. Define ∗uJ by (25) and extend it by demanding
C-linearity. We leave to the reader the task to verify that ∗ so defined
satisfies all the stated properties. Notice that we’ve shown that ∗ does not
depend on the choice of the orthonormal basis.

ut
Specializing further to (r, s)-forms we have

Proposition 4.2.2

ω(r,s) ∈ ar,s(U) =⇒ ∗ω(r,s) ∈ an−s,n−r(U). (26)

ω(r,s) ∈ ar,s(U) =⇒ ∗ ∗ ω(r,s) = (−1)r+sω(r,s). (27)

For J ⊂ {1, . . . , n} and |J | = s,

∗dzJ =
(−1)s(s−1)/2

2n−sin
dzJ ∧


 ∧

i∈J ′
dz̄i ∧ dzi


 . (28)

Proof: For ω(r,s) ∈ ar,s(U) we have < ω(r,s), η >ξ 6= 0 only when η ∈
ar,s(U). (22) implies that ∗ω(r,s) ∈ an−r,n−s(U) and so ∗ω(r,s) ∈ an−s,n−r(U).
(27) follows from (20). Now,

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n = (−1)s(s−1)/2 dzJ ∧ dz̄J ∧ (dz ∧ dz̄)J ′ .

By (22), dzJ ∧ ∗dzJ = 2sdV. Replacing dV by its expression (13) we get

dzJ ∧ ∗dzJ = 2s
(

i

2

)n

(−1)s(s−1)/2dzJ ∧ dz̄J ∧ (dz ∧ dz̄)J ′ .

It follows that

∗dzJ =
in(−1)s(s−1)/2

2n−s
dz̄J ∧ (dz ∧ dz̄)J ′

which is the conjugated of (28).
ut

Returning to volume forms let us now consider a real manifold X ∈ Rn,
of dimension n, with boundary ∂X. Suppose f is a defining function for X
in a neighborhood of a point ξ ∈ ∂X. Then
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Proposition 4.2.3

dSξ = i∗
(
∗dfξ

|dfξ|

)
. (29)

Proof: Choose u2, . . . , un ∈ ŤξRn such that
dfξ

|dfξ| , u2, . . . , un is a positive

orthonormal basis. By (25),

∗
(

dfξ

|dfξ|

)
= u2 ∧ · · · ∧ un.

The proposition follows from (16).
ut

Exercise 7 Show that

∗df =
n∑

i=1

∂f

∂xi
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Also, calculate the area of the unit sphere in Rn.

In the complex situation we have the

Corollary 4.2.4 Let U ∈ Cn be a domain, with boundary ∂U a smooth
manifold. Suppose f is a defining function for U in a neighborhood of a
point ξ ∈ ∂U . Then,

dS = 2 i∗
(∗∂f

|df |
)

. (30)

Proof: We have, ∗df = ∗(∂ + ∂)f = ∗∂f + ∗∂f , by (19). Now,

∂f =
n∑

j=1

∂f

dzj
dzj

and then, by (28),

∗∂f =
n∑

j=1

∂f

dzj
∗ dzj =

1
2n−1in

n∑

j=1

∂f

dzj
dzj ∧


∧

i6=j

dz̄i ∧ dzi


 =

1
i

∂f ∧ ςn−1

(n− 1)!

(31)
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where ς is the form given in (13 bis). Conjugate this expression to get ∗∂f .
We are left with

∗df =
(

1
i

∂f − 1
i

∂f

)
∧ ςn−1

(n− 1)!
. (32)

Now, i∗df = 0 because f = 0 defines ∂U around ξ. Hence, −i∗(∂f) =
i∗(∂f). It follows from (32) and (31) that

i∗(∗df) = 2i∗
(

1
i

∂f ∧ ςn−1

(n− 1)!

)
= 2i∗(∗∂f). (33)

(30) is then a consequence of (29).
ut

4.3 The Bochner-Martinelli kernel

In order to define and exploit the Bochner-Martinelli kernel we must
first use integration by parts to derive a formal adjoint of ∂. The procedure
is the same as in Riemannian geometry, where the formal adjoint of d is
used to define the Laplace-Beltrami operator.

Let ω ∈ ar,s(Cn), η ∈ ar,s+1(Cn) and suppose at least one of them
has compact support. Recall the inner product defined in (14). We have
∂ω ∈ ar,s+1(Cn) and so

< ∂ω, η >Cn =
∫

Cn

< ∂ω, η >ξ dV.

Now ∗η̄ ∈ an−r,n−s−1(Cn) by (26). Thus, ∂ω ∧ ∗η̄ ∈ an,n(Cn) and <
∂ω, η >ξ dVξ = (∂ω∧∗η̄)ξ. Choose a closed euclidean ball B̄ containing the
support of the pertinent form in its interior. Then

< ∂ω, η >Cn =
∫

Cn

∂ω ∧ ∗η̄ =
∫

B̄

∂ω ∧ ∗η̄.

We have d(ω ∧∗η̄) = ∂ω ∧∗η̄ + ∂ω ∧∗η̄ + (−1)r+sω ∧ d ∗ η̄. But ∂ω ∧∗η̄ = 0
since ω ∧ ∗η̄ ∈ an,n−1(Cn) and we are left with

d(ω ∧ ∗η̄) = ∂ω ∧ ∗η̄ + (−1)r+sω ∧ d ∗ η̄.

On the other hand, ω ∧ d ∗ η̄ = ω ∧ ∂ ∗ η̄ + ω ∧ ∂ ∗ η̄. But ω ∧ ∂ ∗ η̄ = 0
because ∂ ∗ η̄ is of type (n− r + 1, n− s− 1) and so

d(ω ∧ ∗η̄) = ∂ω ∧ ∗η̄ + (−1)r+sω ∧ ∂ ∗ η̄.
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We conclude

< ∂ω, η >Cn =
∫

B̄

∂ω ∧ ∗η̄ =
∫

B̄

d(ω ∧ ∗η̄)−
∫

B̄

(−1)r+sω ∧ ∂ ∗ η̄.

By Stokes theorem,
∫

B̄

d(ω ∧ ∗η̄) =
∫

∂B̄

ω ∧ ∗η̄ = 0

since ω ∧ ∗η̄ ≡ 0 on ∂B̄ and thus

< ∂ω, η >Cn =
∫

B̄

∂ω ∧ ∗η̄ = −
∫

B̄

(−1)r+sω ∧ ∂ ∗ η̄.

By (27), (−1)r+s ∂ ∗ η̄ = ∗ ∗ ∂ ∗ η̄. By (19), ∗ ∗ ∂ ∗ η̄ = ∗ ∗ ∂ ∗ η. Therefore,

< ∂ω, η >Cn = −
∫

B̄

ω ∧ ∗ ∗ ∂ ∗ η =

∫

B̄

ω ∧ ∗(− ∗ ∂ ∗ η) = < ω,− ∗ ∂ ∗ η >Cn

(34)

and − ∗ ∂∗ is the formal adjoint of ∂.
Suppose now that neither ω nor η have compact support. We then do as

follows: let U ⊂ Cn be a limited domain whose boundary ∂U is a smooth
manifold and assume ω and η are smooth in a neighborhood of the closure
Ū . Then, proceeding exactly as in the deduction of (34) we arrive at

< ∂ω, η >U =< ω,− ∗ ∂ ∗ η >U +
∫

Ū

d(ω ∧ ∗η̄).

Using Stokes theorem we get

< ∂ω, η >U =< ω,− ∗ ∂ ∗ η >U +
∫

∂U

ω ∧ ∗η̄. (35)

Exercise 8 Show that

< − ∗ ∂ ∗ η, ω >U =< η, ∂ω >U −
∫

∂U

ω̄ ∧ ∗η. (36)
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We now introduce a kernel in Cn × Cn, which is the complex analogue
of the Newtonian potential in Rn ×Rn:

G(w, z) =





− 1
2π

log |w − z|2 for n = 1

(n− 2)!
2πn

|w − z|2−2n for n ≥ 2.
(37)

In what follows, w will denote the variable of integration and z will be
a parameter and we let

α2n−1 =
2πn

(n− 1)!
and Λ = |w − z|2. (38)

Notice that, since the area of the sphere S2n−1
R ⊂ Cn of radius R is α2n−1 R2n−1,

α2n−1 is just the area of the unit sphere S2n−1
1 .

Definition 4.3.1 The Bochner-Martinelli kernel (for functions) is the dou-
ble form

K(w, z) = − ∗ ∂wG(w, z)

of type (n, n− 1) in w and type (0, 0) in z.

Lemma 4.3.2 K(w, z) is represented by the form

K =
(n− 1)!

(2πi)n|w − z|2n

n∑

i=1

(w̄i − z̄i) dwi ∧

∧

j 6=i

dw̄j ∧ dwj


 . (39)

Proof: We have

∂wG(w, z) = − (n− 1)!
2πn|w − z|2n

n∑

i=1

(w̄i − z̄i) dwi

and so

− ∗ ∂wG(w, z) =
(n− 1)!

2πn|w − z|2n

n∑

i=1

(w̄i − z̄i) ∗ dwi. (40)

By (28),

∗dwi =
1

2n−1in
dwi ∧


∧

j 6=i

dw̄j ∧ dwj


 .

Substituting this into (40) gives (39).
ut
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Notice that for n = 1 (39) reads

K(w, z) =
1

2πi

dw

w − z
,

which is just the Cauchy kernel in one variable.

Lemma 4.3.3 ∂wK(w, z) = 0 on Cn ×Cn \ {w = z}.

Proof: To simplify the writting put Cn =
(n− 1)!
(2πi)n

. Then (39) assumes

the form

K = CnΛ−n
n∑

i=1

(w̄i − z̄i) dwi ∧

∧

j 6=i

dw̄j ∧ dwj


 .

Thus,

∂wK = Cn∂wΛ−n ∧
n∑

i=1

(w̄i − z̄i) dwi ∧

∧

j 6=i

dw̄j ∧ dwj


 +

CnΛ−n ∂w




n∑

i=1

(w̄i − z̄i) dwi ∧

∧

j 6=i

dw̄j ∧ dwj





 .

(41)

Now, ∂wΛ−n = −nΛ−n−1
n∑

k=1
(wk − zk) dw̄k and hence

∂wΛ−n ∧
n∑

i=1

(w̄i − z̄i) dwi ∧

∧

j 6=i

dw̄j ∧ dwj


 =

−nΛ−n−1
n∑

i=1

(wi − zi)(w̄i − z̄i) dw̄i ∧ dwi ∧

∧

j 6=i

dw̄j ∧ dwj


 =

−nΛ−n dw̄1 ∧ dw1 ∧ · · · ∧ dw̄n ∧ dwn.

Also,

∂w




n∑

i=1

(w̄i − z̄i) dwi ∧

∧

j 6=i

dw̄j ∧ dwj





 =

ndw̄1 ∧ dw1 ∧ · · · ∧ dw̄n ∧ dwn

and the two terms in (41) cancel each other.
ut

K normalizes the area of spheres, more precisely,
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Lemma 4.3.4 Let Bε(z) denote the euclidean ball centered at z and with
radius ε. Then, ∫

∂Bε(z)

K(w, z) = 1

for all z ∈ Cn and for all ε > 0.

Proof: We have
∂wG(w, z) =

−1
α2n−1

∂Λ
Λn

.

Now, along the sphere ∂Bε(z), Λ = ε2 and then,

− ∗ ∂wG(w, z) =
1

α2n−1ε2n
∗ ∂Λ (42)

on ∂Bε(z).
On the other hand, f(w) = |w − z|2 − ε2 = Λ− ε2 is a defining function

for Bε(z) satisfying ∂f = ∂wΛ and

df = dwΛ =
n∑

i=1

(w̄i − z̄i) dwi.

By (9),

|df |2ξ =< df, df >ξ = 21+1
n∑

i=1

(ξ̄i − z̄i)(ξi − zi) = 21+1ε2 = 4ε2

where ξ = (ξ1, . . . , ξn) ∈ ∂Bε(z), so that |df | = 2ε on the sphere. Invoking
(30) we see that

∗∂wΛ = ∗∂f = ε dS
on ∂Bε(z) and (42) becomes,

− ∗ ∂wG(w, z) =
1

α2n−1ε2n
ε dS =

1
α2n−1ε2n−1

dS. (43)

Integration gives
∫

∂Bε(z)

K(w, z) =
∫

∂Bε(z)

− ∗ ∂wG(w, z) =
1

α2n−1ε2n−1

∫

∂Bε(z)

dS = 1.

ut
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Theorem 4.3.5 Let U ⊂ Cn be a limited domain whose boundary ∂U is
a smooth manifold. Suppose f is a smooth complex function defined in a
neighborhood of Ū . Then, for z ∈ U ,

f(z) =< ∂f, ∂wG >U −
∫

∂U

f ∧ ∗∂wG.

Proof: Given z ∈ U choose ε small enough so that Bε(z) ⊂ U . Invoking
(35) we have, taking due attention to the orientation,

< ∂f, ∂wG >U\Bε(z) =

< f,− ∗ ∂w ∗ ∂wG >U\Bε(z) +
∫

∂U

f ∧ ∗∂wG −
∫

∂Bε(z)

f ∧ ∗∂wG.
(44)

Since G = G,

∂w ∗ ∂wG = ∂w ∗ ∂wG = ∂w(∗∂wG) = ∂w(∗∂wG) = −∂wK = 0

by lemma 4.3.3. Therefore (44) assumes the form

< ∂f, ∂wG >U\Bε(z) −
∫

∂U

f ∧ ∗∂wG = −
∫

∂Bε(z)

f ∧ ∗∂wG. (45)

We now let ε → 0. The left side of (45) tends to

< ∂f, ∂wG >U −
∫

∂U

f ∧ ∗∂wG

and it remains to show

lim
ε→0

−
∫

∂Bε(z)

f ∧ ∗∂wG = f(z) (46).

To see why this holds we do as follows:

−
∫

∂Bε(z)

f(w) ∗ ∂wG(w, z) = −
∫

∂Bε(z)

[f(z) + f(w)− f(z)] ∗ ∂wG(w, z).

Now,

−
∫

∂Bε(z)

[f(z) + f(w)− f(z)] ∗ ∂wG(w, z) =

−
∫

∂Bε(z)

f(z) ∗ ∂wG(w, z)−
∫

∂Bε(z)

[f(w)− f(z)] ∗ ∂wG(w, z).
(47)
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But,

−
∫

∂Bε(z)

f(z) ∗ ∂wG(w, z) = f(z)
∫

∂Bε(z)

− ∗ ∂wG(w, z) =

f(z)
∫

∂Bε(z)

K(w, z) = f(z)

by lemma 4.3.4 and (47) reads

−
∫

∂Bε(z)

f ∧ ∗∂wG = f(z)−
∫

∂Bε(z)

[f(w)− f(z)] ∗ ∂wG(w, z).

Since f is continuous, sup
w∈∂Bε(z)

|f(w) − f(z)| → 0 as ε → 0 and, by the

proof of lemma 4.3.4

∗∂wG(w, z) =
−1

α2n−1ε2n−1
dS

on ∂Bε(z). Hence,∣∣∣∣∣∣∣

∫

∂Bε(z)

[f(w)− f(z)] ∗ ∂wG(w, z)

∣∣∣∣∣∣∣
≤

sup
w∈∂Bε(z)

|f(w)− f(z)| · 1
α2n−1ε2n−1

∫

∂Bε(z)

dS =

sup
w∈∂Bε(z)

|f(w)− f(z)| −→
ε→0

0

and (46) is true. The theorem is proved.
ut

Notice that, when n = 1 theorem 4.3.5 reads

f(z) =
1

2πi

∫

∂U

f(w)
w − z

dw − 1
2πi

∫

U

∂f

∂w̄
(w)

dw̄ ∧ dw

w − z
,

which is the classical generalized Cauchy integral formula for smooth func-
tions.

Theorem 4.3.6 (The Bochner-Martinelli integral formula) Let U ⊂
Cn be a limited domain whose boundary ∂U is a smooth manifold. Suppose
f : Ū → C is continuous and f is holomorphic in U . Then,

∫

∂U

f(w) K(w, z) =





f(z) for z ∈ U

0 for z 6∈ U .
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Proof: Suppose first that f is smooth in a neighborhood of Ū and ∂f = 0.
If z ∈ U , the result follows from theorem 4.3.5. If z 6∈ Ū then,

d(f K) = ∂(f K) = ∂f ∧ K + f ∧ ∂wK = 0

by lemma 4.3.3. By Stokes theorem,

0 =
∫

U

d(f K) =
∫

∂U

f K.

The proof of the theorem now proceeds by constructing an exhaustion
of U by relatively compact domains Uk, whose boundaries are smooth man-
ifolds, U = ∪k≥1Ūk, Ūk ⊂ Uk+1, and passing to the limit k →∞.

ut
Let us now consider B0(w) = K(w, 0). We have, by (39),

B0(w) =
(n− 1)!

(2πi)n|w|2n

n∑

i=1

w̄i dwi ∧

∧

j 6=i

dw̄j ∧ dwj


 .

A manipulation shows that (exercise),

B0(w) = (−1)n(n−1)/2 (n− 1)!
(2πi)n|w|2n

n∑

i=1

ϑi(w) ∧ ϑ(w), (48)

where
ϑ(w) = dw1 ∧ · · · ∧ dwn

and
ϑi(w) = (−1)i−1w̄i dw̄1 ∧ · · · ∧ d̂w̄i ∧ · · · dw̄n.

Let
`n = (−1)n(n−1)/2 (n− 1)!

(2πi)n .

We now define

B(z, ζ) = `n

n∑
i=1

ϑi(z − ζ) ∧ ϑ(ζ)

|z − ζ|2 . (49)

This is the same as

B(z, ζ) = `n

n∑
i=1

(−1)i−1(z̄i − ζ̄i)
∧
j 6=i

(dz̄j − dζ̄j) ∧ dζ1 ∧ · · · ∧ dζn

|z − ζ|2 . (50)

B(z, ζ) is related to the Grothendieck residues, as we will indicate in the
next section.
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4.4 Dolbeault cohomology

We now want to introduce a cohomology theory for the ∂ operator.
Recall that De Rham’s cohomology on U is defined by (see [Lima2]): let
Zp(U) = {ω ∈ ap(U) : dω = 0}, p ≥ 0, (closed p-forms) and Bp(U) =
d

(
ap−1(U)

)
if p ≥ 1 and B0(U) = {0} (exact p-forms). Since d2 = 0,

Bp(U) is a subspace of Zp(U). The quocient spaces

Hp
DR(U) =

Zp(U)
Bp(U)

p ≥ 0

measure the obstruction to solving the equation dθ = ω on U , that is, given
ω such that dω = 0, find θ satisfying dθ = ω. Notice that the differentiable
structure of U is clearly involved in the definition of the groups Hp

DR(U).
Locally, the necessary condition dω = 0 is also sufficient to solve dθ = ω
(Poincaré’s lemma). A deep theorem by De Rham shows that in fact the
groups Hp

DR(U) depend only on the topology of U , since this result exhibits
an isomorphism Hp

DR(U) ≈ Hp
s (U ;C) (singular cohomology with coefficients

in C).
For example, the kernel B0 restricts, by (43), to a positive multiple

of the area element of the sphere S2n−1
δ (0). B0 is then a generator of

H2n−1
DR (S2n−1

δ (0);C).
Now for the Dolbeault cohomology. Given ω ∈ a(r,s)(U), s ≥ 1, one

wants to find a solution θ ∈ a(r,s−1)(U) of the equation ∂θ = ω. Again,
because ∂

2 = 0, a necessary condition is that ∂ω = 0. “Locally”, this
necessary condition is also sufficient, more precisely, for polydiscs in Cn

a solution can be found. This is the content of the Bochner-Dolbeault-
Grothendieck lemma (see [Gu]). On the other hand, the solvability of this
equation globally, even for U ⊂ Cn a domain, is a much more involved
question and depends on the global complex analytic properties of U .

The definition of the Dolbeault groups is: let

Zr s(U) = {ω ∈ a(r,s)(U) : ∂ω = 0}

(∂ closed (r, s)-forms) and

Br s(U) = ∂
(
a(r,s−1)(U)

)
if s ≥ 1 and Br 0(U) = {0}.

The quotient

Hr s
∂

(U) =
Zr s(U)
Br s(U)
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is the (r, s) Dolbeault cohomology group of U . Remark that O(U) =
H0 0

∂
(U).
Let us briefly indicate how the Bochner-Martinelli kernel is related to

point residues. We cannot present complete arguments here since, to do so,
we would have to develop sheaf cohomology theory. We refer the reader to
[G-H].

For X a complex manifold of dimension n and ap the sheaf of complex
valued smooth p-forms on X, the Dolbeault theorem gives an isomorphism

Hq(X,ap) ≈ Hp q

∂
(X).

To define point residues we considered meromorphic forms of the form

η = g
dz1 ∧ · · · ∧ dzn

f1 · · · fn
, with f = (f1, . . . , fn) a finite holomorphic map. We

may assume f defined in a small euclidean ball B centered at 0 ∈ Cn. Recall
that f−1(0) = {0}.

Since d = ∂ on forms of type (n, q), we have a natural map

Hn−1(B \ {0},an) ≈ Hn n−1
∂

(B \ {0}) −→ H2n−1
DR (B \ {0};C).

B \ {0} is homotopically the sphere S2n−1
δ (0) and B0 is a generator of

H2n−1
DR (S2n−1

δ (0);C) ≈ C. The arrow above is then just integration over
the sphere and the above sequence of spaces and maps means

(
1

2πi

)n

η
Dolbeault theorem

−−−−−−−−−−−−→
≈

$η −→
∫

S2n−1
δ

(0)

$η.

$η is called the distinguished Dolbeault representative of
η

(2πi)n .

Consider the map
F : B → Cn ×Cn

defined by
F (z) = (z + f(z), z).

It can be shown that $η = g F ∗B (recall (50)) and that

Res 0(g, f) =
1

(2πi)n

∫

Γε

g(z)
dz1 ∧ · · · ∧ dzn

f1(z) · · · fn(z)
=

∫

S2n−1
δ

(0)

g(z) F ∗B(z, ζ).
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