Lectures on Point Residues

Márcio G. Soares

To Helena

Contents

Introduction 1
1 A brief view of Cauchy's theory 3
1.1 Index of a point relative to a path 3
1.2 Holomorphic functions 8
1.3 Meromorphic functions 15
2 The Index and the Multiplicity 23
2.1 The Poincaré Hopf index 23
2.1.1 The Brouwer degree 23
2.1.2 Holomorphic maps 25
2.1.3 The index 30
2.2 The Milnor number 35
2.2.1 First results on the multiplicity 35
2.2.2 The preparation theorem 39
2.3 Relation between \mathcal{I} and μ 46
3 Grothendieck residues 53
3.1 The Trace map 53
3.2 The Residue 58
3.3 Local duality 62
4 Residues and Kernels 67
4.1 Complex valued differential forms 67
4.2 Volume forms and the Hodge *-operator 70
4.3 The Bochner-Martinelli kernel 75
4.4 Dolbeault cohomology 83
Bibliography 85

Index 87

Introduction

These notes were written to complement a series of lectures to be delivered at IMCA, Instituto de Matemática y Ciencias Afines, Lima, Perú, in July 2002. Our aim was to present, in a form as elementary as possible, the definition and basic properties of point residues from a geometric point of view. This concept was introduced by Alexander Grothendieck around 1957 and an extensive account of it was given by R. Hartshorne in [Ha]. Since our point of view was to present it in a geometric fashion, we were very much guided by the works $[\mathrm{Gr}]$, $[\mathrm{G}-\mathrm{H}]$ and $[\mathrm{A}-\mathrm{V}-\mathrm{GZ}]$.

Throughout these notes we will sometimes refer, without proof, to results on Differential Topology, Commutative Algebra, Several Complex Variables and Algebraic Topology. In each section we quote basic references on these subjects and we urge the reader, in case he (she) is not familiarized with them, to have this bibliography at hand.

We are grateful to IMCA for the invitation, to César Camacho for the suggestion of lecturing there and to Mariana Cornelissen and Flaviana Dutra for revising the manuscript.

Belo Horizonte, April 2002
Márcio G. Soares
Dep. Matemática - UFMG
msoares@ufmg.br

[^0]
Chapter 1

A brief view of Cauchy's theory

1.1 Index of a point relative to a path

We start with some very basic definitions. Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ be a function. The derivative of f at a point $p \in U$, noted $f^{\prime}(p)$, is

$$
\lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}
$$

provided this limit exists. f is holomorphic on U if $f^{\prime}(p)$ exists for all $p \in U$.
A domain in \mathbb{C} is an open connected set $U \subset \mathbb{C}$.
A path in \mathbb{C}^{n} is a continuous mapping $\gamma: J \rightarrow \mathbb{C}^{n}$, where $J=[a, b] \subset \mathbb{R}$ and $a<b . \gamma(a)$ and $\gamma(b)$ are called the initial point and the end point of γ, respectively. γ is said to be closed if $\gamma(a)=\gamma(b)$. We will denote by $\underline{\gamma}$ the image of the interval J by γ, that is, $\gamma=\gamma(J) \subset \mathbb{C} . \gamma$ is differentiable if γ^{\prime} exists and is continuous throughout J (note that, at the end points of J, we have only one-sided derivatives).

If γ_{1} and γ_{2} are two paths such that the end point of γ_{1} is the initial point of γ_{2}, we can form the path $\gamma_{1} \cdot \gamma_{2}$, called the juxtaposition of γ_{1} and γ_{2}, as follows: let $\left[a_{i}, b_{i}\right]$ be the interval of definition of γ_{i}. Choose C^{1} diffeomorphisms h_{1}, h_{2}, preserving orientations, $h_{1}:[0,1 / 2] \rightarrow\left[a_{1}, b_{1}\right]$, $h_{2}:[1 / 2,1] \rightarrow\left[a_{2}, b_{2}\right]$ and define $\gamma_{1} \cdot \gamma_{2}$ by

$$
\gamma_{1} \cdot \gamma_{2}(t)= \begin{cases}\gamma_{1} \circ h_{1}(t) & , \text { if } t \in[0,1 / 2] \\ \gamma_{2} \circ h_{2}(t) & , \text { if } t \in[1 / 2,1] .\end{cases}
$$

Clearly $\underline{\gamma_{1} \cdot \gamma_{2}}=\underline{\gamma_{1}} \cup \underline{\gamma_{2}}$ and, similarly, we can form the juxtaposition of a finite number of paths.

Finally, γ is a piecewise differentiable path if it is the juxtaposition of a finite number of differentiable paths. The reverse path γ^{-}of a path γ is defined by $\gamma^{-}(t)=\gamma(a+b-t)$. Observe that the initial point and the end point of γ^{-}are the end point and the initial point of γ, respectively, and that $\gamma=\gamma^{-}$.

Consider a differentiable path $\gamma: J \rightarrow \mathbb{C}$ and let f be a continuous complex valued function defined on γ. The integral of f along γ is defined by:

$$
\int_{\gamma} f=\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Remark 1 The following properties hold:
(i) The path integral is independent of the parametrization of γ. This means the following: let $h:\left[a^{\prime}, b^{\prime}\right] \rightarrow[a, b]$ be a C^{1} diffeomorphism preserving orientation, that is, $h\left(a^{\prime}\right)=a, h\left(b^{\prime}\right)=b$ and let $\lambda=\gamma \circ h$. Then

$$
\begin{aligned}
\int_{\lambda} f= & \int_{a^{\prime}}^{b^{\prime}} f(\lambda(s)) \lambda^{\prime}(s) d s= \\
& \int_{a^{\prime}}^{b^{\prime}} f(\gamma \circ h(s)) \gamma^{\prime}(h(s)) h^{\prime}(s) d s=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t= \\
& \int_{\gamma} f
\end{aligned}
$$

(ii) The path integral is "sensitive to the orientation" (exercise):

$$
\int_{\gamma^{-}} f=-\int_{\gamma} f
$$

(iii) Let $M \geq \sup _{\gamma}|f|$, then (exercise)

$$
\left|\int_{\gamma} f\right| \leq M \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

where $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$ is, by definition, the lenght of the path γ.
(iv) Let $f: U \rightarrow \mathbb{C}$ be a continuous function. Recall that a primitive of f is a function $F: U \rightarrow \mathbb{C}$ such that $F^{\prime}(z)=f(z)$ for all $z \in U$. Note that F is necessarily holomorphic. Suppose f admits a primitive in U and let γ be a path in U with initial point z_{1} and end point z_{2}, then (exercise)

$$
\int_{\gamma} f=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

In particular, if γ is closed we get $\int_{\gamma} f=0$.
More generally, for a piecewise-differentiable path $\gamma=\gamma_{1} \ldots \cdot \gamma_{k}$ and a continuous f whose domain of definition contains $\gamma_{1} \cdot \ldots \cdot \gamma_{k}$, we set

$$
\int_{\gamma_{1} \cdots \cdot \gamma_{k}} f=\int_{\gamma_{1}} f+\cdots+\int_{\gamma_{k}} f
$$

From now on, unless explicitly stated, by a path we shall mean a piecewise differentiable path.

We are now in a position to start exploiting the Cauchy kernel $\frac{d w}{w-z}$.
Consider a path γ in \mathbb{C}. Its image γ is a compact subset of the plane and therefore is limited. Choose a disc $D \overline{\text { containing }} \underline{\gamma}$. The complement $\mathbb{C} \backslash D$ is connected, not bounded and contained in $\mathbb{C} \backslash \underline{\gamma}$ hence, $\mathbb{C} \backslash D$ is contained in a connected component of $\mathbb{C} \backslash \underline{\gamma}$ and we conclude that $\mathbb{C} \backslash \underline{\gamma}$ has precisely one unbounded component.

Now let γ be a closed path in \mathbb{C} and $z \in \mathbb{C} \backslash \underline{\gamma}$. Define the index of the point z with respect to γ by

$$
\mathcal{I}_{\gamma}(z)=\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{d w}{w-z}
$$

We have the following integrality result:
Theorem 1.1.1 For each $z \in \mathbb{C} \backslash \underline{\gamma}$ the number $\mathcal{I}_{\gamma}(z)$ is an integer, that is, we have a function $\mathcal{I}_{\gamma}: \mathbb{C} \backslash \gamma \longrightarrow \overline{\mathbb{Z}}$. Moreover, this function is continuous, hence constant in each connected component of $\mathbb{C} \backslash \underline{\gamma}$ and furthermore, it assumes the value zero in the unbounded component of $\mathbb{C} \backslash \underline{\gamma}$.

Proof: Let $\gamma:[a, b] \rightarrow \mathbb{C}$ and $z \in \mathbb{C} \backslash \underline{\gamma}$. By definition,

$$
\mathcal{I}_{\gamma}(z)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{\gamma^{\prime}(t)}{\gamma(t)-z} d t
$$

Consider the function $\psi:[a, b] \rightarrow \mathbb{C}$ given by

$$
\psi(t)=\exp \left(\int_{a}^{t} \frac{\gamma^{\prime}(s)}{\gamma(s)-z} d s\right)
$$

We have $\psi^{\prime}(t)=\left(\frac{\gamma^{\prime}(t)}{\gamma(t)-z}\right) \psi(t)$ except at the finite set of points $\left\{t_{i}\right\}_{i=1, \ldots, m}$, where the path γ is not differentiable. Hence,

$$
\begin{equation*}
\frac{\psi^{\prime}(t)}{\psi(t)}=\frac{\gamma^{\prime}(t)}{\gamma(t)-z} \tag{1}
\end{equation*}
$$

in $[a, b] \backslash\left\{t_{i}\right\}_{i=1, \ldots, m}$. Look at the function $\varphi(t)=\frac{\psi(t)}{\gamma(t)-z}$. It is continuous in $[a, b]$ and its derivative at any $t \in[a, b] \backslash\left\{t_{i}\right\}_{i=1, \ldots, m}$ is, by (1),

$$
\varphi^{\prime}(t)=\frac{\psi^{\prime}(t)(\gamma(t)-z)-\psi(t) \gamma^{\prime}(t)}{(\gamma(t)-z)^{2}}=0
$$

It follows that φ is constant in $[a, b]$ and, since $\varphi(a)=\frac{1}{\gamma(a)-z}$, we have

$$
\psi(t)=\frac{\gamma(t)-z}{\gamma(a)-z} \quad \forall t \in[a, b]
$$

Since $\gamma(a)=\gamma(b)$ we get $\psi(b)=1$. Therefore,

$$
\exp \left(\int_{a}^{b} \frac{\gamma^{\prime}(s)}{\gamma(s)-z} d s\right)=1
$$

and we conclude that $\int_{a}^{b} \frac{\gamma^{\prime}(s)}{\gamma(s)-z} d s=2 \pi i k$, with k an integer. This shows $\mathcal{I}_{\gamma}(z) \in \mathbb{Z}$. The continuity of \mathcal{I}_{γ} will follow from the

Lemma 1.1.2 The function \mathcal{I}_{γ} admits a power series expansion around each $\zeta \in \mathbb{C} \backslash \underline{\gamma}$.

Proof: Fix $\zeta \in \mathbb{C} \backslash \underline{\gamma}$ and let $D(\zeta ; r)$ be an open disc contained in $\mathbb{C} \backslash \underline{\gamma}$ and centered at ζ. Now, for any $t \in[a, b]$ we have $|\gamma(t)-\zeta| \geq r$ and then

$$
\left|\frac{z-\zeta}{\gamma(t)-\zeta}\right| \leq \frac{|z-\zeta|}{r}<1
$$

for any $z \in D(\zeta ; r)$. Hence, for fixed z, the series

$$
\sum_{i=0}^{\infty} \frac{(z-\zeta)^{i}}{(\gamma(t)-\zeta)^{i}}
$$

converges uniformly on $[a, b]$. Since

$$
\begin{aligned}
\frac{1}{\gamma(t)-z} & =\frac{1}{\gamma(t)-\zeta+\zeta-z}=\frac{1}{\gamma(t)-\zeta} \frac{1}{\left(1-\frac{z-\zeta}{\gamma(t)-\zeta}\right)} \\
& =\frac{1}{\gamma(t)-\zeta} \sum_{i=0}^{\infty} \frac{(z-\zeta)^{i}}{(\gamma(t)-\zeta)^{i}}=\sum_{i=0}^{\infty} \frac{(z-\zeta)^{i}}{(\gamma(t)-\zeta)^{i+1}}
\end{aligned}
$$

we conclude

$$
\begin{aligned}
\mathcal{I}_{\gamma}(z) & =\frac{1}{2 \pi \boldsymbol{i}} \int_{a}^{b} \sum_{i=0}^{\infty} \frac{\gamma^{\prime}(t)}{(\gamma(t)-\zeta)^{i+1}}(z-\zeta)^{i} d t \\
& =\frac{1}{2 \pi \boldsymbol{i}} \sum_{i=0}^{\infty}\left[\int_{a}^{b} \frac{\gamma^{\prime}(t)}{(\gamma(t)-\zeta)^{i+1}} d t\right](z-\zeta)^{i}
\end{aligned}
$$

because we can interchange summation and integration. The lemma is proved.

The lemma shows \mathcal{I}_{γ} is a continuous function. It remains to show that $\mathcal{I}_{\gamma}(z)=0$ for z in the unbounded component of $\mathbb{C} \backslash \underline{\gamma}$. To this end choose a point z in this component which satisfies

$$
\inf _{t \in[a, b]}|z-\gamma(t)|>\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

It follows from (iii) of Remark 1 that

$$
\left|\mathcal{I}_{\gamma}(z)\right| \leq \frac{1}{\inf _{t \in[a, b]}|z-\gamma(t)|} \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t<1
$$

and since \mathcal{I}_{γ} is integer-valued and continuous it must be identically zero in the unbounded component. This finishes the proof of the theorem.

Example 1.1.3 Let γ be a circle centered at a point $z \in \mathbb{C}, \gamma(t)=z+$ $r e^{2 \pi i t}, r>0,0 \leq t \leq 1$. Then

$$
\mathcal{I}_{\gamma}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{w-z} d w=\frac{1}{2 \pi i} \int_{0}^{1} \frac{2 \pi i r e^{2 \pi i t}}{r e^{2 \pi i t}} d t=\int_{0}^{1} d t=1
$$

We leave to the reader the task to convince himself that the index, $\mathcal{I}_{\gamma}(z)$, measures the effective number of turns that the plane vector $\gamma(t)$ describes around the point z, as t varies in the interval of definition of γ.

1.2 Holomorphic functions

In this section we present the structure of Cauchy's theory on holomorphic functions. The first step is the simple result (recall (iv) of Remark 1):

Proposition 1.2.1 Let $f: U \rightarrow \mathbb{C}$ be a continuous function defined in the domain $U \subset \mathbb{C}$. Then the following properties are equivalent:
(i) f admits a primitive in U.
(ii) $\int_{\gamma} f=0$ for any closed path γ in U.
(iii) $\int_{\lambda} f$ depends only on the initial and end points of any path λ in U.

Proof: Exercise or see [Soares].
Next we have the fundamental result
Theorem 1.2.2 (Cauchy-Goursat) Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function defined in the domain $U \subset \mathbb{C}$. Assume T is a closed triangular region entirely contained in U and denote by Δ its boundary. Then

$$
\int_{\Delta} f=0 .
$$

Proof: See [Soares].
We exploit this result for a particular type of open sets in the plane. Suppose $U \subset \mathbb{C}$ is open. U is a starlike domain if there exists a point
$z_{0} \in U$ with the property that, given any point $z \in U$ the line segment $\overline{z_{0} z}$ is entirely contained in U. Any convex open set is an example of such a domain. We then have:

Corollary 1.2.3 Let $U \subset \mathbb{C}$ be a starlike domain and $f: U \rightarrow \mathbb{C}$ a holomorphic function. Then f admits a primitive in U.

Proof: See [Soares].
Using this corollary we imediately have
Corollary 1.2.4 (Cauchy-Goursat revisited) Let $U \subset \mathbb{C}$ be a starlike domain and $f: U \rightarrow \mathbb{C}$ a holomorphic function. If γ is a closed path in U then

$$
\int_{\gamma} f=0 .
$$

Proof: Exercise.
Corollary 1.2.4 allow us to prove the
Theorem 1.2.5 (Local Cauchy's integral formula) Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ a holomorphic function. Let $\bar{D}\left(z_{0}, r_{0}\right) \subset U$ be a closed disc and Γ its boundary, oriented counterclockwise. If z is any point in $D\left(z_{0}, r_{0}\right)$ then,

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)}{w-z} d w .
$$

Proof: See [Soares].
This fundamental theorem unveils the local nature of holomorphic functions because, by manipulating the integrand we deduce the following facts: (i) holomorphic functions have derivatives of all orders at all points of their domains and

$$
f^{(k)}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)}{(w-z)^{k+1}} d w, \quad k \geq 0 .
$$

Note that the derivatives of a holomorphic function are also holomorphic.
(ii) holomorphic functions are analytic, that is, if ζ belongs to the domain of f then

$$
f(z)=\sum_{i=0}^{\infty} \frac{f^{(i)}(\zeta)}{i!}(z-\zeta)^{i}
$$

and this series has positive radius of convergence.
From (i) we deduce the
Proposition 1.2.6 (Cauchy's estimates) Let f be holomorphic on the disc $D(\zeta, r)$ and $|f(z)| \leq M$ for all $z \in D(\zeta, r)$. Then

$$
\left|f^{(k)}(\zeta)\right| \leq \frac{k!M}{r^{k}}
$$

Proof: Exercise.
This last proposition furnishes the
Theorem 1.2.7 (Liouville's theorem) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic (such a function is called an entire function). If $|f|$ is bounded then f is constant.

Proof: Suppose $|f(z)| \leq M \quad \forall z \in \mathbb{C}$. Let $\zeta \in \mathbb{C}$. The Cauchy estimate $\left|f^{\prime}(\zeta)\right|<M / r$ holds for all $r>0$. Hence $f^{\prime}(\zeta)=0 \quad \forall \zeta \in \mathbb{C}$ and f is constant.

A partial converse to theorem 1.2.2 is the
Theorem 1.2.8 (Morera's theorem) Let $U \subset \mathbb{C}$ be a domain and f : $U \rightarrow \mathbb{C}$ a continuous function. Suppose $\int_{\Delta} f=0$ for every triangular path $\Delta \subset U$. Then f is holomorphic in U.

Proof: Let $\zeta \in U$ and choose a disc $D(\zeta, r) \subset U, r>0$. Use the hypothesis to show that f admits a primitive F in $D(\zeta, r)$. Since F is holomorphic and $F^{\prime}=f$ in $D(\zeta, r)$, we conclude that f is holomorphic.

We now introduce some objects of homological nature and then proceed to present the global theorem of Cauchy.

A chain σ is a formal sum of a finite number of paths in the plane, $\sigma=\gamma_{1}+\cdots+\gamma_{k}$. If f is a continuous function defined in $\underline{\sigma}=\underline{\gamma_{1}} \cup \cdots \cup \underline{\gamma_{k}}$ we define

$$
\int_{\sigma} f=\sum_{i=1}^{k} \int_{\gamma_{i}} f .
$$

If $\underline{\sigma}$ is contained in a domain $U \subset \mathbb{C}$, we say that σ is a chain in U.

Let $\sigma=\gamma_{1}+\cdots+\gamma_{k}$ be a chain. If each γ_{i} is replaced by its reverse γ_{i}^{-}, then the chain so obtained is denoted by $-\sigma$ and

$$
\int_{-\sigma} f=-\int_{\sigma} f
$$

In this way chains can be added and subtracted.
Observe that a chain σ can be expressed in several ways as a sum of paths and, in case $\sigma=\gamma_{1}+\cdots+\gamma_{k}=\alpha_{1}+\cdots+\alpha_{m}$, we have

$$
\sum_{i=1}^{k} \int_{\gamma_{i}} f=\sum_{j=1}^{m} \int_{\alpha_{j}} f
$$

for any f which is continuous and defined in $\underline{\gamma_{1}} \cup \cdots \cup \underline{\gamma_{k}} \cup \underline{\alpha_{1}} \cup \cdots \cup \underline{\alpha_{m}}$.
If the chain $\sigma=\gamma_{1}+\cdots+\gamma_{k}$ is such that all paths $\overline{\gamma_{i}}$ are closed, then σ is called a cycle. Since the representation of a chain as a sum of paths is not unique, a cycle may be represented by a sum of paths that are not closed.

Let $\sigma=\gamma_{1}+\cdots+\gamma_{k}$ be a cycle. If $z \in \mathbb{C} \backslash \underline{\sigma}$ then we set

$$
\mathcal{I}_{\sigma}(z)=\sum_{i=1}^{k} \mathcal{I}_{\gamma_{i}}(z)
$$

Note that $\mathcal{I}_{-\sigma}(z)=-\mathcal{I}_{\sigma}(z)$. With this at hand we have the main result of the theory:

Theorem 1.2.9 (Cauchy's theorem) Let $U \subset \mathbb{C}$ be a domain and f : $U \rightarrow \mathbb{C}$ a holomorphic map. Suppose σ is a cycle in U satisfying

$$
\mathcal{I}_{\sigma}(\zeta)=0 \quad \forall \zeta \notin U
$$

Then,

$$
\begin{gather*}
\mathcal{I}_{\sigma}(z) f(z)=\frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w \quad \text { for } z \in U \backslash \underline{\sigma} \tag{I}\\
\int_{\sigma} f(z) d z=0 \tag{II}
\end{gather*}
$$

Moreover, if σ_{0} and σ_{1} are cycles in U such that $\mathcal{I}_{\sigma_{0}}(\zeta)=\mathcal{I}_{\sigma_{1}}(\zeta)$ for all $\zeta \notin U$ then,

$$
\begin{equation*}
\int_{\sigma_{0}} f(z) d z=\int_{\sigma_{1}} f(z) d z \tag{III}
\end{equation*}
$$

Proof: The proof of this global version of Cauchy's theorem is due to J.Dixon [Dixon]. Consider the function $g: U \times U \rightarrow \mathbb{C}$ defined by

$$
g(z, w)= \begin{cases}\frac{f(w)-f(z)}{w-z} & , \text { if } w \neq z \\ f^{\prime}(z) & , \text { if } w=z\end{cases}
$$

Lemma 1.2.10 g is continuous.
Proof: It's immediate that g is continuous in $U \times U \backslash\{(\zeta, \zeta): \zeta \in U\}$. Let us show its continuity at a point (ζ, ζ). Given $\epsilon>0$ choose $\delta>0$ such that $|\ell-\zeta|<\delta \Rightarrow\left|f^{\prime}(\ell)-f^{\prime}(\zeta)\right|<\epsilon$. Let z and w belong to the open set $D(\zeta, \delta) \cap U$. If $w=z$ we get $|g(z, z)-g(\zeta, \zeta)|<\epsilon$. If $z \neq w$ consider the line segment joining them, $\ell(t)=(1-t) z+t w, 0 \leq t \leq 1$. We have

$$
\begin{aligned}
f(w)-f(z)= & f(\ell(1))-f(\ell(0))= \\
& \int_{0}^{1} f^{\prime}(\ell(t)) \ell^{\prime}(t) d t= \\
& \int_{0}^{1} f^{\prime}(\ell(t))(w-z) d t
\end{aligned}
$$

so that

$$
g(z, w)=\int_{0}^{1} f^{\prime}(\ell(t)) d t
$$

Since $g(\zeta, \zeta)=f^{\prime}(\zeta)=\int_{0}^{1} f^{\prime}(\zeta) d t$ we obtain

$$
g(z, w)-g(\zeta, \zeta)=\int_{0}^{1}\left[f^{\prime}(\ell(t))-f^{\prime}(\zeta)\right] d t
$$

By (iii) of Remark 1

$$
|g(z, w)-g(\zeta, \zeta)| \leq \sup _{t \in[0,1]}\left|f^{\prime}(\ell(t))-f^{\prime}(\zeta)\right|<\epsilon
$$

and the lemma is proved.
Next we consider, for fixed $w \in U$, the function $g_{w}: U \rightarrow \mathbb{C}$ defined by $g_{w}(z)=g(z, w)$. This function is clearly holomorphic in $U \backslash\{w\}$. We claim the

Lemma 1.2.11 g_{w} is holomorphic in U.
Proof: By the previous lemma, g_{w} is continuous at w and $g_{w}(w)=f^{\prime}(w)$. Put $\phi(z)=(z-w) g_{w}(z) . \phi$ is continuous in U, holomorphic in $U \backslash\{w\}$ and $\phi(w)=0$. Now,

$$
\lim _{z \rightarrow w} \frac{\phi(z)-\phi(w)}{z-w}=\lim _{z \rightarrow w} \frac{(z-w) g_{w}(z)}{z-w}=\lim _{z \rightarrow w} g_{w}(z)=f^{\prime}(w),
$$

so ϕ is differentiable at w and therefore holomorphic in U. Around w it has a convergent power series expansion

$$
\begin{aligned}
\phi(z)= & f^{\prime}(w)(z-w)+\sum_{j=2}^{\infty} a_{j}(z-w)^{j}= \\
& (z-w)\left[f^{\prime}(w)+\sum_{j=2}^{\infty} a_{j}(z-w)^{j-1}\right] .
\end{aligned}
$$

We conclude $g_{w}(z)=f^{\prime}(w)+\sum_{j=2}^{\infty} a_{j}(z-w)^{j-1}$ and the lemma is proved. w is called a removable (or fake) singularity (which will be considered later).

Returning to the proof of the theorem, we let $\varphi: U \rightarrow \mathbb{C}$ be defined by

$$
\varphi(z)=\frac{1}{2 \pi i} \int_{\sigma} g(z, w) d w .
$$

We claim that φ is continuous. In fact, let $\left(z_{n}\right) \rightarrow z$ be a sequence in U, convergent to $z \in U$. The set $\left(\left\{z_{n}\right\}_{n=1}^{\infty} \cup\{z\}\right) \times \underline{\sigma}$ is a compact subset of $U \times U$. Hence, g is uniformly continuous in this set and therefore $g_{w}\left(z_{n}\right) \rightarrow g_{w}(z)$ uniformly on w. This shows the continuity of φ.

Let us prove that φ is holomorphic in U. Consider a closed triangular region $T \subset U$ with boundary Δ. Then,

$$
\begin{array}{r}
\int_{\Delta} \varphi(z) d z=\frac{1}{2 \pi i} \int_{\sigma}\left[\int_{\Delta} g(z, w) d z\right] d w= \\
\frac{1}{2 \pi i} \int_{\sigma}\left[\int_{\Delta} g_{w}(z) d z\right] d w=0
\end{array}
$$

because $\int_{\Delta} g_{w}(z) d z=0$ since g_{w} is holomorphic. Invoking Morera's theorem we conclude that φ is holomorphic.

Set $V=\left\{z \in \mathbb{C}: \mathcal{I}_{\sigma}(z)=0\right\}$. By hypothesis, $\mathbb{C} \backslash U \subset V$ and by theorem 1.1.1, the unbounded component of $\mathbb{C} \backslash \underline{\sigma}$ is also contained in V. Define the holomorphic function $\psi: V \rightarrow \mathbb{C}$ by

$$
\psi(z)=\frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w
$$

If $z \in U \cap V$ then

$$
\begin{aligned}
\varphi(z)= & \frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)-f(z)}{w-z} d w= \\
& \frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w-\frac{f(z)}{2 \pi i} \int_{\sigma} \frac{1}{w-z} d w= \\
& \frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w-f(z) \mathcal{I}_{\sigma}(z)= \\
& \frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w=\psi(z) .
\end{aligned}
$$

Hence, there exist a holomorphic function $\Psi: U \cup V \rightarrow \mathbb{C}$ such that $\Psi_{\mid U}=\varphi$ and $\Psi_{\mid V}=\psi$. Since V contains the complement of U we have that Ψ is an entire function. Now,

$$
\lim _{|z| \rightarrow \infty} \Psi(z)=\lim _{|z| \rightarrow \infty} \psi(z)=0
$$

and we conclude that $|\Psi|$ is bounded. By Liouville's theorem $\Psi(z)=0$ for all $z \in \mathbb{C}$. It follows that $\varphi(z)=0$ for all $z \in U$. Hence, for $z \in U \backslash \underline{\sigma}$,

$$
\begin{aligned}
& 0=\varphi(z)=\frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)-f(z)}{w-z} d w= \\
& \frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w-\frac{f(z)}{2 \pi i} \int_{\sigma} \frac{1}{w-z} d w= \\
& \frac{1}{2 \pi i} \int_{\sigma} \frac{f(w)}{w-z} d w-f(z) \mathcal{I}_{\sigma}(z)
\end{aligned}
$$

and (I) is proved.

To prove (II) we use (I) as follows: choose $\zeta \in U \backslash \underline{\sigma}$ and let $F(z)=$ $(z-\zeta) f(z)$. Since $F(\zeta)=0$ we get

$$
\int_{\sigma} f(z) d z=\int_{\sigma} \frac{F(z)}{z-\zeta} d z=2 \pi i \mathcal{I}_{\sigma}(\zeta) F(\zeta)=0 .
$$

Finally, let σ_{0} and σ_{1} be cycles in U such that $\mathcal{I}_{\sigma_{0}}(\zeta)=\mathcal{I}_{\sigma_{1}}(\zeta)$ for all $\zeta \notin U$. Consider the cycle $\sigma_{0}-\sigma_{1}$. Then $\mathcal{I}_{\sigma_{0}-\sigma_{1}}(\zeta)=\mathcal{I}_{\sigma_{0}}(\zeta)-\mathcal{I}_{\sigma_{1}}(\zeta)=0$. By (II),

$$
0=\int_{\sigma_{0}-\sigma_{1}} f(z) d z=\int_{\sigma_{0}} f(z) d z-\int_{\sigma_{1}} f(z) d z .
$$

This proves (III) and finishes the proof of the theorem.

1.3 Meromorphic functions

The annulus $A\left(\zeta ; R_{1}, R_{2}\right)$ with center $\zeta \in \mathbb{C}$ and radii R_{1}, R_{2} where $0 \leq R_{1}<R_{2} \leq \infty$, is the open set

$$
A\left(\zeta ; R_{1}, R_{2}\right)=\left\{z \in \mathbb{C}: R_{1}<|z-\zeta|<R_{2}\right\} .
$$

Holomorphic functions defined in an annulus have a representation by power series as follows:

Theorem 1.3.1 (Laurent's expansion) Consider a holomorphic function $f: A\left(\zeta ; R_{1}, R_{2}\right) \rightarrow \mathbb{C}$. Then

$$
f(z)=\sum_{m=1}^{\infty} b_{m} \frac{1}{(z-\zeta)^{m}}+\sum_{n=0}^{\infty} a_{n}(z-\zeta)^{n},
$$

where the series $\sum_{m=1}^{\infty} b_{m} \frac{1}{(z-\zeta)^{m}}$ converges for $|z-\zeta|>R_{1}$ and the series $\sum_{n=0}^{\infty} a_{n}(z-\zeta)^{n}$ converges for $|z-\zeta|<R_{2}$. Moreover, this expansion is unique and the coefficients b_{m} and a_{n} are given by:

$$
\begin{aligned}
& b_{m}=\frac{1}{2 \pi i} \int_{\gamma} f(z)(z-\zeta)^{m-1} d z, m \geq 1 \\
& a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-\zeta)^{n+1}} d z, n \geq 0 .
\end{aligned}
$$

Proof: See [Soares].

Definition 1.3.2 Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function defined in the domain U. A point $\zeta \in \mathbb{C} \backslash U$ is an isolated singularity of f if there exists a positive R such that the annulus $A(\zeta ; 0, R) \subset U$.

Invoke the Laurent expansion of f in $A(\zeta ; 0, R)$:

$$
f(z)=\sum_{m=1}^{\infty} \frac{b_{m}}{(z-\zeta)^{m}}+\sum_{n=0}^{\infty} a_{n}(z-\zeta)^{n}
$$

We have the following mutually exclusive possibilities:
(1) $b_{m}=0$ for all $m \geq 1$. In this case we say that ζ is a removable singularity of f. By setting $f(\zeta)=a_{0}$ we have that f admits a holomorpic extension to the disc $D(\zeta, R)$.
(2) There exist a $k \geq 1$ such that $b_{k} \neq 0$ and $b_{m}=0$ for all $m>k$. In this case we say that ζ is a pole of order k of f, or simply a pole of f. Observe that for $z \in A(\zeta ; 0, R)$ we have:

$$
f(z)=\frac{b_{k}}{(z-\zeta)^{k}}+\cdots+\frac{b_{1}}{(z-\zeta)}+\sum_{n=0}^{\infty} a_{n}(z-\zeta)^{n}
$$

The rational function

$$
Q(z)=\frac{b_{k}}{(z-\zeta)^{k}}+\cdots+\frac{b_{1}}{(z-\zeta)}
$$

is called the principal part of f at the pole ζ. It follows from (1) that the function $g(z)=(z-\zeta)^{k} f(z)$ has a removable singularity at ζ and that $g(\zeta)=b_{k} \neq 0$. Hence,

$$
\lim _{z \rightarrow \zeta} f(z)=\lim _{z \rightarrow \zeta} \frac{g(z)}{(z-\zeta)^{k}}=\infty
$$

(3) $b_{m} \neq 0$ for infinite values of m. In this case we say that ζ is an essential singularity of f.

Another caracterization of isolated singularities is the following:
Proposition 1.3.3 Let ζ be an isolated singularity of f. Then,
(1) ζ is a removable singularity if, and only if, $|f|$ is bounded in some annulus $A(\zeta ; 0, R) \subset U$.
(2) ζ is a pole of f if, and only if, $\lim _{z \rightarrow \zeta} f(z)=\infty$.
(3) ζ is an essential singularity of f if, and only if, for every $R>0$ such that $A(\zeta ; 0, R) \subset U, f(A(\zeta ; 0, R))$ is dense in \mathbb{C}.

Proof: See [Soares]

Definition 1.3.4 A function f is said to be meromorphic on an open set U if there is a subset P of U such that:
(i) P is discrete.
(ii) f is holomorphic in $U \backslash \mathrm{P}$.
(iii) f has a pole at each point of P .

Note that the possibility $\mathrm{P}=\emptyset$ is allowed and so holomorphic functions are also meromorphic.

Definition 1.3.5 Let f be a meromorphic function on the open set U and $\zeta \in \mathrm{P}$. Invoke the Laurent expansion of f in an annulus $A(\zeta ; 0, R) \subset U$,

$$
f(z)=\frac{b_{k}}{(z-\zeta)^{k}}+\cdots+\frac{b_{1}}{(z-\zeta)}+\sum_{n=0}^{\infty} a_{n}(z-\zeta)^{n}
$$

The Cauchy residue of f at ζ, noted $\operatorname{Res}(f, \zeta)$, is the coefficient b_{1}.
Let us point out that $\operatorname{Res}(f, \zeta)$ is not invariant by changes of coordinates. For instance, if $f(z)=1 / z$, then $\operatorname{Res}(f, 0)=1$. Let $h(w)=w /(w-1)$. Then $f \circ h(w)=1-1 / w$ and $\operatorname{Res}(f \circ h, 0)=-1$.

Consider the principal part $Q(z)=\frac{b_{k}}{(z-\zeta)^{k}}+\cdots+\frac{b_{1}}{(z-\zeta)}$ of f at ζ and let σ be a cycle in \mathbb{C} such that $\zeta \notin \underline{\sigma}$. Applying (I) of Cauchy's theorem to the constant (entire) functions $f_{j}(z) \equiv b_{j}, 1 \leq j \leq k$, we get

$$
\frac{1}{2 \pi \boldsymbol{i}} \int_{\sigma} \frac{b_{j}}{(z-\zeta)^{j}} d z= \begin{cases}\mathcal{I}_{\sigma}(\zeta) f_{j}^{(j-1)}(\zeta)=0, & \text { for } 2 \leq j \leq k \\ \mathcal{I}_{\sigma}(\zeta) f_{1}(\zeta)=\mathcal{I}_{\sigma}(\zeta) b_{1}, & \text { for } j=1\end{cases}
$$

Therefore,

$$
\frac{1}{2 \pi \boldsymbol{i}} \int_{\sigma} Q(z) d z=\mathcal{I}_{\sigma}(\zeta) \operatorname{Res}(Q, \zeta)
$$

We have the
Theorem 1.3.6 (Cauchy's residue theorem) Let f be a meromorphic function on the domain U and P be its set of poles. If σ is a cycle in $U \backslash \mathrm{P}$ such that $\mathcal{I}_{\sigma}(w)=0$ for all $w \notin U$ then,

$$
\frac{1}{2 \pi i} \int_{\sigma} f(z) d z=\sum_{\zeta \in \mathrm{P}} \mathcal{I}_{\sigma}(\zeta) \operatorname{Res}(f, \zeta)
$$

Proof: By theorem 1.1.1 we know that \mathcal{I}_{σ} is constant in each connected component \mathcal{C} of $\mathbb{C} \backslash \underline{\sigma}$. If \mathcal{C} is unbounded, or if $\mathcal{C} \cap(\mathbb{C} \backslash U) \neq \emptyset$ then, by theorem 1.1.1, or by the hypothesis, $\mathcal{I}_{\sigma}(w)=0, \forall w \in \mathcal{C}$. Since the set P is discrete, we conclude that the set $\mathrm{P}^{*}=\left\{z \in \mathrm{P}: \mathcal{I}_{\sigma}(z) \neq 0\right\}$ is finite (it could as well be empty). Hence the summation above is actually over a finite number of points $\zeta \in \mathrm{P}$.

Let $\mathrm{P}^{*}=\left\{\zeta_{1}, \ldots, \zeta_{m}\right\}$ and Q_{1}, \ldots, Q_{m} be the principal parts of f at $\zeta_{1}, \ldots, \zeta_{m}$, respectively. Set $g=f-\left(Q_{1}+\cdots+Q_{m}\right)$. The points $\zeta_{1}, \ldots, \zeta_{m}$ are all removable singularities of g and therefore g is holomorphic on the open set $U \backslash\left(\mathrm{P} \backslash \mathrm{P}^{*}\right)$. By hypothesis, $\mathcal{I}_{\sigma}(w)=0$ for all $w \notin U \backslash\left(\mathrm{P} \backslash \mathrm{P}^{*}\right)$, so that we can apply (II) of Cauchy's theorem 1.2.9 to the function g and obtain

$$
0=\int_{\sigma} g(z) d z=\int_{\sigma} f(z) d z-\int_{\sigma}\left(Q_{1}(z)+\cdots+Q_{m}(z)\right) d z .
$$

But this gives, using (\star),

$$
\frac{1}{2 \pi i} \int_{\sigma} f(z) d z=\sum_{i=1}^{m} \frac{1}{2 \pi i} \int_{\sigma} Q_{i}(z) d z=\sum_{i=1}^{m} \mathcal{I}_{\sigma}\left(\zeta_{i}\right) \operatorname{Res}\left(Q_{i}, \zeta_{i}\right) .
$$

Since $\operatorname{Res}\left(Q_{i}, \zeta_{i}\right)=\operatorname{Res}\left(f, \zeta_{i}\right)$ we get

$$
\frac{1}{2 \pi i} \int_{\sigma} f(z) d z=\sum_{\zeta \in \mathrm{P}} \mathcal{I}_{\sigma}(\zeta) \operatorname{Res}(f, \zeta) .
$$

The next two results are very useful consequences of the residue theorem. Before stating them let's recall the multiplicity of a zero of a holomorphic function of one variable. Suppose $f: U \rightarrow \mathbb{C}$ is a holomorphic function defined in a neighborhood $U \subset \mathbb{C}$ of a point ζ and such that $f(\zeta)=0$. Expanding f in power series around ζ we get

$$
f(z)=\sum_{k=\mu}^{\infty} a_{k}(z-\zeta)^{k}=(z-\zeta)^{\mu} g(z)
$$

where $a_{\mu}=g(\zeta) \neq 0, g$ is holomorphic and $g(z)=\sum_{j=0}^{\infty} a_{\mu+j}(z-\zeta)^{j}$. The number $\mu=\mu(f, \zeta)$ is the multiplicity of the zero ζ of f.

Remark 2 Let f be a meromorphic function in U and $L^{\prime} f$ be the function $L^{\prime} f(z)=\frac{f^{\prime}(z)}{f(z)}$. We claim that the poles of $L^{\prime} f$ are the zeros and poles of f. To see this let $\zeta \in U$. If $f(\zeta) \neq 0$ then $L^{\prime} f$ is holomorphic in a neighborhood of ζ and $\operatorname{Res}\left(L^{\prime} f, \zeta\right)=0$. If ζ is a zero of multiplicity μ of f, then $f(z)=(z-\zeta)^{\mu} g(z)$ in a neighborhood of $\zeta, g(\zeta) \neq 0$ and

$$
L^{\prime} f(z)=\frac{f^{\prime}(z)}{f(z)}=\frac{\mu}{z-\zeta}+\frac{g^{\prime}(z)}{g(z)}
$$

so that $L^{\prime} f$ has a pole of order 1 at ζ with $\operatorname{Res}\left(L^{\prime} f, \zeta\right)=\mu$. Now if ζ is a pole of order m of f then, in an annulus $A(\zeta ; 0, \epsilon) \subset U$ we have $f(z)=$ $(z-\zeta)^{-m} h(z)$, where h is holomorphic in this annulus with $h(\zeta) \neq 0$. Hence

$$
L^{\prime} f(z)=\frac{f^{\prime}(z)}{f(z)}=\frac{-m}{z-\zeta}+\frac{h^{\prime}(z)}{h(z)}
$$

and $L^{\prime} f$ has a pole of order 1 at ζ with $\operatorname{Res}\left(L^{\prime} f, \zeta\right)=-m$. Summarizing

$$
\begin{aligned}
& \operatorname{Res}\left(L^{\prime} f, \zeta\right)=0 \Longleftrightarrow f \text { is holomorphic at } \zeta \text { and } f(\zeta) \neq 0 . \\
& \operatorname{Res}\left(L^{\prime} f, \zeta\right)=\mu>0 \Longleftrightarrow \zeta \text { is a zero of multiplicity } \mu \text { of } f . \\
& \operatorname{Res}\left(L^{\prime} f, \zeta\right)=-m<0 \Longleftrightarrow \zeta \text { is a pole of order } m \text { of } f .
\end{aligned}
$$

Let's now make the following convention. If f is a meromorphic function on U, denote by Z and P its sets of zeros and poles, respectively. The number of zeros and poles of f in $V \subset U, \mathrm{Z}(f ; V), \mathrm{P}(f ; V)$, counted with multiplicities is, by definition:

$$
\begin{aligned}
& \mathrm{Z}(f ; V)=\sum_{\zeta \in V \cap \mathrm{Z}} \mu(f, \zeta) \\
& \mathrm{P}(f ; V)=\sum_{\zeta \in V \cap \mathrm{P}} m(f, \zeta)
\end{aligned}
$$

where $m(f, \zeta)$ is the order of the pole ζ of f. With this at hand we have the
Theorem 1.3.7 (Argument Principle) Let $U \subset \mathbb{C}$ be a domain and γ a closed path in U such that $\mathcal{I}_{\gamma}(\zeta)=0$ for all $\zeta \notin U$. Assume $\mathcal{I}_{\gamma}(\zeta)=0$ or 1 for all $\zeta \in U \backslash \underline{\gamma}$ and let $U^{*}=\left\{\zeta \in \mathbb{C}: \mathcal{I}_{\gamma}(\zeta)=1\right\}$. Suppose f is a meromorphic function on U and that f has neither zeros nor poles on $\underline{\gamma}$. Then

$$
\mathrm{Z}\left(f ; U^{*}\right)-\mathrm{P}\left(f ; U^{*}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\mathcal{I}_{\Gamma}(0)
$$

where $\Gamma=f \circ \gamma$.

Proof: We start by proving the last equality.

$$
\begin{aligned}
\mathcal{I}_{\Gamma}(0)= & \frac{1}{2 \pi \boldsymbol{i}} \int_{\Gamma} \frac{d z}{z}=\frac{1}{2 \pi \boldsymbol{i}} \int_{0}^{1} \frac{\Gamma^{\prime}(t)}{\Gamma(t)} d t= \\
& \frac{1}{2 \pi i} \int_{0}^{1} \frac{(f \circ \gamma)^{\prime}(t)}{(f \circ \gamma)(t)} \gamma^{\prime}(t) d t=\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
\end{aligned}
$$

To prove the first equality let us look at the function $L^{\prime} f$. It is meromorphic in U and by the hypotheses and remark 2 , it has no poles on $\underline{\gamma}$. Let $P\left(L^{\prime} f\right)$ denote its set of poles. Invoking the Residue theorem 1.3.6 and remark 2 again we get

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z= & \frac{1}{2 \pi i} \int_{\gamma} L^{\prime} f(z) d z= \\
& \sum_{\zeta \in P\left(L^{\prime} f\right)} \operatorname{Res}\left(L^{\prime} f, \zeta\right)=\mathrm{Z}\left(f ; U^{*}\right)-\mathrm{P}\left(f ; U^{*}\right) .
\end{aligned}
$$

Theorem 1.3.8 (Rouché's principle) Let $U \subset \mathbb{C}$ be a domain and γ a closed path in U such that $\mathcal{I}_{\gamma}(\zeta)=0$ for all $\zeta \notin U$. Assume $\mathcal{I}_{\gamma}(\zeta)=0$ or 1 for all $\zeta \in U \backslash \underline{\gamma}$ and let $U^{*}=\left\{\zeta \in \mathbb{C}: \mathcal{I}_{\gamma}(\zeta)=1\right\}$. Let f be holomorphic on U, with no zeros on $\underline{\gamma}$. If g is holomorphic on U and satisfies

$$
|f(z)-g(z)|<|f(z)| \quad \forall z \in \underline{\gamma}
$$

then

$$
\mathrm{Z}\left(g ; U^{*}\right)=\mathrm{Z}\left(f ; U^{*}\right)
$$

Proof: The inequality above implies that g has no zeros on $\underline{\gamma}$. Hence the previous theorem 1.3.7 holds for g and we get $\mathrm{Z}\left(g ; U^{*}\right)=\mathcal{I}_{\Lambda}(\overline{0})$ where Λ is the closed path $\Lambda=g \circ \gamma$. On the other hand we also have by theorem 1.3.7, $\mathcal{I}_{\Gamma}(0)=\mathrm{Z}\left(f ; U^{*}\right)$ with $\Gamma=f \circ \gamma$. It remains to show that $\mathcal{I}_{\Lambda}(0)=\mathcal{I}_{\Gamma}(0)$. We have by hypothesis

$$
|\Gamma(t)-\Lambda(t)|<|\Gamma(t)| \quad \forall t \in[0,1]
$$

Note that this gives $\Gamma(t) \neq 0$ and $\Lambda(t) \neq 0$ for all $t \in[0,1]$. Set $\xi(t)=\frac{\Lambda(t)}{\Gamma(t)}$. Then $|1-\xi(t)|<1$ which gives $\underline{\xi} \subset D(1,1)$, so that 0 lies in the unbounded component of $\mathbb{C} \backslash \underline{\xi}$ and we conclude $\mathcal{I}_{\xi}(0)=0$. Since

$$
\frac{\xi^{\prime}(t)}{\xi(t)}=\frac{\Lambda^{\prime}(t)}{\Lambda(t)}-\frac{\Gamma^{\prime}(t)}{\Gamma(t)}
$$

we get

$$
\begin{aligned}
0= & \mathcal{I}_{\xi}(0)=\frac{1}{2 \pi \boldsymbol{i}} \int_{0}^{1} \frac{\xi^{\prime}(t)}{\xi(t)} d t= \\
& \frac{1}{2 \pi \boldsymbol{i}} \int_{0}^{1} \frac{\Lambda^{\prime}(t)}{\Lambda(t)} d t-\frac{1}{2 \pi \boldsymbol{i}} \int_{0}^{1} \frac{\Gamma^{\prime}(t)}{\Gamma(t)} d t=\mathcal{I}_{\Lambda}(0)-\mathcal{I}_{\Gamma}(0)
\end{aligned}
$$

and the theorem is proved.
Rouché's principle can be used to prove the Fundamental Theorem of Algebra (exercise).

Chapter 2

The Index and the Multiplicity

In this chapter we introduce the topological index of Poincaré Hopf and the algebraic multiplicity, which became known as Milnor number. These concepts are fundamental and extremely useful and we shall exploit them when we talk about residues.

2.1 The Poincaré Hopf index

2.1.1 The Brouwer degree

The basic references for this section are the books by E. Lima [Lima 1] and J. Milnor [Milnor].

We will be mainly concerned with problems of local nature, so it suffices for our purposes to consider only manifolds which are embedded in euclidean spaces. The first tool we need is the

Theorem 2.1.1 (Sard's theorem) Let $U \subset \mathbb{R}^{m}$ be an open set and f : $U \rightarrow \mathbb{R}^{n}$ be a smooth map. Denote by Σ the set of critical points of f, that is, $\Sigma=\left\{p \in U: \operatorname{rank} f^{\prime}(p)<n\right\}$. Then the image $f(\Sigma) \subset \mathbb{R}^{n}$ has Lebesgue measure zero.

Proof: See [Milnor].
Without difficulty we deduce from this the (exercise)
Corollary 2.1.2 (Brown's theorem) Let X and Y be smooth ma- nifolds and $f: X \rightarrow Y$ be a smooth map. Then the set of regular values of f, $Y \backslash f(\Sigma)$, is everywhere dense in Y.

In order to fix notations let us recall the concept of orientable manifolds.
An orientation for a finite dimensional real vector space is an equivalence class of ordered bases, the relation been defined by: the ordered basis \mathcal{B} determines the same orientation as the ordered basis \mathcal{B}^{\prime} if the isomorphism changing \mathcal{B} into \mathcal{B}^{\prime} has positive determinant. \mathcal{B} and \mathcal{B}^{\prime} determine opposite orientations if the isomorphism changing \mathcal{B} into \mathcal{B}^{\prime} has negative determinant. It follows that each non-trivial vector space has precisely two orientations. In case the vector space is zero dimensional we define orientations by the symbols +1 and -1 . For \mathbb{R}^{N} the standard orientation is the one corresponding to the ordered canonical basis

$$
\mathcal{B}=\left\{e_{1}, \ldots, e_{N}\right\} \text { where } e_{i}=\underbrace{(0, \ldots, 0,1,0, \ldots, 0)}_{\text {i-th position }} .
$$

Now let X be a connected manifold, $\operatorname{dim} X=n \geq 1$ (with boundary or not). X is orientable if we can choose an orientation for each tangent space $T_{p} X$ in such a way that the following holds: given $p \in X$, there exist a neighborhood $p \in U \subset X$ and a diffeomorphism $\varphi: U \rightarrow V, \varphi(U)=V$, where $V \subset \mathbb{R}^{n}$ is open $\left(V \subset\left\{x \in \mathbb{R}^{n}: x_{n} \geq 0\right\}\right.$ is open, in case X has boundary) which preserves orientation, that is, $\varphi^{\prime}(p)$ carries the chosen orientation for $T_{p} X$ into the standard orientation for \mathbb{R}^{n}.

An orientation for a connected manifold can also be given in terms of differential forms. More precisely, X is orientable if there is a nowhere zero continuous n-form ω on X. Two such forms, say ω_{1}, ω_{2}, are said to define the same orientation if $\omega_{2}=\rho \omega_{1}$ with ρ a positive continuous function on X (see [Lima1] for details).

If X has a boundary and is orientable, an orientation for X induces an orientation for ∂X as follows: given $p \in \partial X$, choose a positive basis $\mathcal{B}=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for $T_{p} X$ with the following property: $\left\{v_{2}, \ldots, v_{n}\right\}$ generate $T_{p} \partial X$ and v_{1} is an outward vector. Then $\mathcal{B}^{\prime}=\left\{v_{2}, \ldots, v_{n}\right\}$ determines the positive orientation for $T_{p} \partial X$. If $\operatorname{dim} X=1$, to each boundary point p is assigned the orientation -1 or +1 depending on whether a positively oriented vector at p points inward or outward.

Before introducing the concept of degree recall that a continous map $f: X \rightarrow Y$ between two manifolds is proper provided the inverse image $f^{-1}(K) \subset X$ is compact whenever $K \subset Y$ is compact.

Let X and Y be oriented manifolds, both of dimension n, Y connected and $f: X \rightarrow Y$ a smooth, proper map. Pick a regular point $p \in X$ of f. Then the tangent map $f^{\prime}(p): T_{p} X \rightarrow T_{f(p)} Y$ is a linear isomorphism
between oriented vector spaces. Define the sign of $f^{\prime}(p)$ by

$$
\operatorname{sgn} f^{\prime}(p)= \begin{cases}+1 & , \text { if } f^{\prime}(p) \text { preserves orientation } \\ -1 & , \text { if } f^{\prime}(p) \text { reverses orientation }\end{cases}
$$

Now, if $q \in Y$ is a regular value of f set $\operatorname{deg}(f, q)=\sum_{p \in f^{-1}(q)} \operatorname{sgn} f^{\prime}(p)$. The remarkable fact about $\operatorname{deg}(f, q)$ is

Theorem 2.1.3 The integer $\operatorname{deg}(f, q)$ does not depend on the regular value $q \in Y$.

Proof: See [Lima 1].
Hence we have the
Definition 2.1.4 The degree of the map f is $\operatorname{deg} f=\operatorname{deg}(f, q)$ where $q \in Y$ is a regular value of f.

Recall that a smooth homotopy between two maps $f, g: X \rightarrow Y$ is a smooth map $F: X \times[0,1] \rightarrow Y$ such that $F(0,.) \equiv f$ and $F(1,.) \equiv g$. The degree is invariant under homotopy, more precisely:

Theorem 2.1.5 If f is smoothly homotopic to g, then $\operatorname{deg} f=\operatorname{deg} g$.
Proof: See [Lima 1].
We shall need the following useful result: suppose that X^{n+1} is a compact oriented manifold with boundary ∂X and Y^{n} is connected and oriented. Let $f: \partial X \rightarrow Y$ be a smooth map (note that f is necessarily proper).

Proposition 2.1.6 If f admits a smooth extension $F: X \rightarrow Y$, then $\operatorname{deg} f=0$.

Proof: See [Milnor].

2.1.2 Holomorphic maps

In this section we'll be interested in maps $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ and in map germs.

Let $U \subset \mathbb{C}^{n}$ be a domain (open and connected set). Recall that if $n=1$, then a function $f: U \rightarrow \mathbb{C}$ is holomorphic provided $f^{\prime}(z)$ exists for every
$z \in U$. If we identify $\mathbb{C} \approx \mathbb{R}^{2}, z=x+\boldsymbol{i} y, \bar{z}=x-\boldsymbol{i} y, f(z)=u+\boldsymbol{i} v$ and introduce the derivations

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

then f holomorphic is equivalent to:

$$
f^{\prime}=\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)
$$

and is also equivalent to: f is continuous and its partial derivatives with respect to x and y exist and satisfy the Cauchy-Riemann differential equation

$$
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=0 .
$$

This last equivalence is a difficult theorem of Loomann and Menchof (see [Na]). It is easy to show this equivalence in case the partial derivatives of f are continuous (exercise).

Consider now a function $f: U \rightarrow \mathbb{C}, U \subset \mathbb{C}^{n}$.
Definition 2.1.7 f is called partially holomorphic if, for each point $\left(p_{1}, \ldots, p_{n}\right) \in$ U and each $j=1, \ldots, n$, the function of one variable defined by

$$
z_{j} \longmapsto f\left(p_{1}, \ldots, p_{j-1}, z_{j}, p_{j+1}, \ldots, p_{n}\right)
$$

is holomorphic. A continuous partially holomorphic function is called holomorphic.

A nontrivial theorem due to Hartogs states that a partially holomorphic function is necessarily continuous (see [Hö], theorem 2.2.8), so we could skip the word continuous in the above definition.

Let $\mathcal{O}(U)$ be the set of holomorphic functions on U. Then,
Proposition 2.1.8 $\mathcal{O}(U)$ is an algebra whose set of units $\mathcal{O}^{*}(U)$ consists of the holomorphic functions on U which vanish nowhere.

Proof: Exercise.

Exercise 1 Let $U \subset \mathbb{C}^{n}$ be a domain and denote by $\operatorname{dim}_{\mathbb{C}} \mathcal{O}(U)$ its dimension as a \mathbb{C}-linear space. Show that

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{O}(U)<\infty \Longleftrightarrow \operatorname{dim}_{\mathbb{C}} \mathcal{O}(U)=1 \Longleftrightarrow n=0
$$

Identify $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$ by

$$
\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right) \approx\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)
$$

In \mathbb{C}^{n} we introduce the derivations

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+\boldsymbol{i} \frac{\partial}{\partial y_{j}}\right)
$$

for $j=1, \ldots, n$.
Invoking the theorems of Loomann-Menchof and of Hartogs we see that a function f is holomorphic if, and only if, it has partial derivatives and they satisfy the Cauchy-Riemann equations:

$$
\frac{\partial f}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial f}{\partial x_{j}}+i \frac{\partial f}{\partial y_{j}}\right)=0, \quad 1 \leq j \leq n
$$

Exercise 2 Show that

$$
\overline{\left(\frac{\partial f}{\partial z_{j}}\right)}=\frac{\partial \bar{f}}{\partial \bar{z}_{j}} \quad \text { and } \quad \overline{\left(\frac{\partial f}{\partial \bar{z}_{j}}\right)}=\frac{\partial \bar{f}}{\partial z_{j}}
$$

Definition 2.1.9 $A \operatorname{map} f=\left(f_{1}, \ldots, f_{m}\right): U \rightarrow \mathbb{C}^{m}$, where U is a domain in \mathbb{C}^{n}, is holomorphic if each component f_{j} is a holomorphic function. If also f is a bijection and f^{-1} is holomorphic, then f is a biholomorphism or biholomorphic.

We now treat questions of orientation. Let $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$ with the identification given above. Consider the complexified of $\mathbb{R}^{2 n}$, that is, $\mathbb{R}^{2 n} \otimes \mathbb{C}$. The meaning of this is that we consider $\mathbb{R}^{2 n}$ as a complex vector space, so the scalar field is now \mathbb{C} and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{R}^{2 n} \otimes \mathbb{C}\right)=2 n$. We have the following bases of $\mathbb{R}^{2 n} \otimes \mathbb{C}$:

$$
\mathcal{B}_{1}=\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial y_{n}}\right\}
$$

Of course this is a basis of $\mathbb{R}^{2 n}$ (as real vector space) and determines the standard orientation.

$$
\mathcal{B}_{2}=\left\{\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{n}}\right\}
$$

and

$$
\mathcal{B}_{3}=\left\{\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\}
$$

Let us use these bases to show the

Proposition 2.1.10 Biholomorphic maps preserve orientation.
Proof: We will show that if we consider f as a smooth map from $\mathbb{R}^{2 n}$ into itself, then the derivative $f^{\prime}(p)$ preserves the orientation determined by \mathcal{B}_{1}.

Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a biholomorphism, which we write in coordinates as $f\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\left(u_{1}, v_{1}, \ldots, u_{n}, v_{n}\right)$. Then the derivative $f^{\prime}(p)$ is represented by the matrix

$$
\left[f^{\prime}(p)\right]=\left(\begin{array}{ccc}
\frac{\partial\left(u_{1}, v_{1}\right)}{\partial\left(x_{1}, y_{1}\right)} & \cdots & \frac{\partial\left(u_{1}, v_{1}\right)}{\partial\left(x_{n}, y_{n}\right)} \\
\vdots & \ddots & \vdots \\
\frac{\partial\left(u_{n}, v_{n}\right)}{\partial\left(x_{1}, y_{1}\right)} & \cdots & \frac{\partial\left(u_{n}, v_{n}\right)}{\partial\left(x_{n}, y_{n}\right)}
\end{array}\right)_{\left.\right|_{p}}
$$

relative to the basis \mathcal{B}_{1}, where

$$
\frac{\partial\left(u_{j}, v_{j}\right)}{\partial\left(x_{k}, y_{k}\right)_{\left.\right|_{p}}}=\left(\begin{array}{ll}
\frac{\partial u_{j}}{\partial x_{k}} & \frac{\partial u_{j}}{\partial y_{k}} \\
\frac{\partial v_{j}}{\partial x_{k}} & \frac{\partial v_{j}}{\partial y_{k}}
\end{array}\right)_{\left.\right|_{p}}, \quad 1 \leq j, k \leq n .
$$

The change from the basis

$$
\left\{\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial y_{j}}\right\} \text { to the basis }\left\{\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{j}}\right\}
$$

is given by the matrix

$$
P=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-\boldsymbol{i} / 2 & \boldsymbol{i} / 2
\end{array}\right) \text { with } P^{-1}=\left(\begin{array}{cc}
1 & \boldsymbol{i} \\
1 & -\boldsymbol{i}
\end{array}\right) .
$$

Hence, passing from the basis

$$
\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial y_{n}}\right\}
$$

to the basis

$$
\left\{\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{n}}\right\}
$$

the matrix representing $f^{\prime}(p)$ becomes

$$
\left(\begin{array}{ccc}
P^{-1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & P^{-1}
\end{array}\right)\left(\begin{array}{ccc}
\frac{\partial\left(u_{1}, v_{1}\right)}{\partial\left(x_{1}, y_{1}\right)} & \cdots & \frac{\partial\left(u_{1}, v_{1}\right)}{\partial\left(x_{n}, y_{n}\right)} \\
\vdots & & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & & \vdots \\
\frac{\partial\left(u_{n}, v_{n}\right)}{\partial\left(x_{1}, y_{1}\right)} & \cdots & \frac{\partial\left(u_{n}, v_{n}\right)}{\partial\left(x_{n}, y_{n}\right)}
\end{array}\right)\left(\begin{array}{ccc}
P & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & P
\end{array}\right)
$$

$$
=\left(\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial z_{1}} & 0 & & \frac{\partial f_{1}}{\partial z_{n}} & 0 \\
0 & \frac{\partial f_{1}}{\partial z_{1}} & \cdots & 0 & \frac{\partial f_{1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial z_{1}} & 0 & & \frac{\partial f_{n}}{\partial z_{n}} & 0 \\
0 & \frac{\partial f_{n}}{\partial z_{1}} & \cdots & 0 & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)_{\left.\right|_{p}}
$$

Changing now from the basis

$$
\left\{\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{n}}\right\}
$$

to the basis

$$
\left\{\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\}
$$

this last matrix transforms into

$$
\left(\begin{array}{cccccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & \frac{\partial f_{1}}{\partial z_{n}} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}} & \frac{0}{\overline{\partial f_{1}}} & \cdots & 0 \\
0 & \cdots & 0 & \frac{\partial f_{1}}{\partial z_{1}} & & \frac{0}{\partial z_{n}} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \frac{\overline{\partial f_{n}}}{\partial z_{1}} & \cdots & \frac{\overline{\partial f_{n}}}{\partial z_{n}}
\end{array}\right)_{\left.\right|_{p}}
$$

hence is of the form

$$
\left[f^{\prime}(p)\right]=\left(\begin{array}{cc}
J f(p) & 0 \\
0 & \overline{J f(p)}
\end{array}\right)
$$

where

$$
J f(p)=\left(\frac{\partial f_{i}}{\partial z_{j}}(p)\right)_{1 \leq i, j \leq n}
$$

In particular

$$
\begin{aligned}
& \operatorname{det}\left[f^{\prime}(p)\right]=\operatorname{det} J f(p) \operatorname{det} \overline{J f(p)}= \\
& \operatorname{det} J f(p) \overline{\operatorname{det} J f(p)}=|\operatorname{det} J f(p)|^{2}>0
\end{aligned}
$$

and the proposition is proved.
We finish this section with the

Definition 2.1.11 Let $p \in \mathbb{C}^{n}$. A map germ (smooth or holomorphic) or germ at p is an equivalence class of maps (smooth or holomorphic) where two maps are equivalent if they agree on a neighborhood of p. We adopt the notation $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{m}, q\right)$ to denote the germ of f at p with $f(p)=q$.

2.1.3 The index

We denote by $|z|$ the hermitian norm in $\mathbb{C}^{n},|z|=\sqrt{\sum_{j=1}^{n} z_{j} \bar{z}_{j}}$. Consider map germs $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, q\right)$. Without loss of generality we shall assume $f(p)=q=0$ and we also refer to p as a root of $f=0$.

Definition 2.1.12 Let $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ with $f^{-1}(0)=\{p\}$. The index or Poincaré Hopf index of f at p, noted $\mathcal{I}_{p}(f)$, is the degree of the smooth map

$$
\frac{f}{|f|}: S_{\epsilon}^{2 n-1}(p) \longrightarrow S_{1}^{2 n-1}
$$

where $S_{\epsilon}^{2 n-1}(p)$ is the euclidean sphere of radius $\epsilon>0, S_{\epsilon}^{2 n-1}(p)=\{z \in$ $\left.\mathbb{C}^{n}:|z-p|=\epsilon\right\}$ and $S_{1}^{2 n-1}$ is the unit sphere centered at $0 \in \mathbb{C}^{n}$.

Remark that if ϵ is sufficiently small then the index is well defined and, by Proposition 2.1.6, it does not depend on ϵ (exercise).

To illustrate this concept we have the
Proposition 2.1.13 If $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is the germ of a biholomorphism, then $\mathcal{I}_{p}(f)=1$.

Proof: We need the auxiliary

Lemma 2.1.14 Let U be an open convex subset of $\mathbb{C}^{n}, p \in U$, and $\phi: U \rightarrow$ \mathbb{C} holomorphic. Then there exist holomorphic functions $g_{1}, \ldots, g_{n}: U \rightarrow \mathbb{C}$ such that

$$
\phi(z)=\phi(p)+\sum_{j=1}^{n} g_{j}(z)\left(z_{j}-p_{j}\right)
$$

where $p=\left(p_{1}, \ldots, p_{n}\right)$. Moreover, $g_{j}(p)=\frac{\partial \phi}{\partial z_{j}}(p)$.
Proof: Fix $z \in U$ and define $h(t)=\phi(p+t(z-p))$. Since U is convex h is well defined on the interval $[0,1]$. We have

$$
\phi(z)-\phi(p)=h(1)-h(0)=\int_{0}^{1} h^{\prime}(t) d t
$$

By the chain rule $h^{\prime}(t)=\sum_{j=1}^{n} \frac{\partial \phi}{\partial z_{j}}(p+t(z-p))\left(z_{j}-p_{j}\right)$. Put

$$
g_{j}(z)=\int_{0}^{1} \frac{\partial \phi}{\partial z_{j}}(p+t(z-p)) d t
$$

Now to the proof of the theorem. By using a translation (which is necessarily orientation preserving) we may assume $p=0$. The derivative of f at 0 is given by

$$
f^{\prime}(0) \cdot z=\lim _{t \rightarrow 0} \frac{f(t z)}{t}
$$

hence we let

$$
F(z, t)= \begin{cases}\frac{f(t z)}{t} & , \text { for } 0<t \leq 1 \\ f^{\prime}(0) . z & , \text { for } t=0\end{cases}
$$

To see the smoothness of F we invoke the above lemma:

$$
F(z, t)=\left(\sum_{j=1}^{n} g_{1 j}(t z) z_{j}, \ldots, \sum_{j=1}^{n} g_{n j}(t z) z_{j}\right) \forall t \in[0,1]
$$

Now, $F(z, t) \neq 0$ for all $t \in[0,1]$ because f is bijective and then

$$
\frac{F(z, t)}{|F(z, t)|}
$$

gives a smooth homotopy between $f /|f|$ and $f^{\prime}(0) /\left|f^{\prime}(0)\right|$. This linear isomorphism preserves orientation, since GL $(n ; \mathbb{C})$ is connected, and we get $1=\mathcal{I}_{0}\left(f^{\prime}(0)\right)=\mathcal{I}_{0}(f)$.

Choose a closed euclidean ball centered at $p, \bar{B}_{\epsilon}(p)$, of radius ϵ small enough so that the only solution of $f(z)=0$ in $\bar{B}_{\epsilon}(p)$ is p.

Proposition 2.1.15 $\mathcal{I}_{p}(f)$ is the number of points of the set $f^{-1}(\zeta) \cap B_{\epsilon}(p)$ where ζ is a regular value of f sufficiently close to 0 .

Proof: Let $\delta=\inf _{S_{\epsilon}^{2 n-1}(p)}|f|>0$. Then $|f(z)-t \zeta| \geq \delta-t|\zeta|>0$ for all $t \in[0,1], z \in S_{\epsilon}^{2 n-1}(p)$ and ζ a regular value sufficiently close to 0 . It follows that $f^{-1}(t \zeta) \cap S_{\epsilon}^{2 n-1}(p)=\emptyset$ for all $0 \leq t \leq 1$. We then have that

$$
F(z, t)=\frac{f(z)-t \zeta}{|f(z)-t \zeta|}
$$

gives a smooth homotopy between $\frac{f-\zeta}{|f-\zeta|}$ and $\frac{f}{|f|}$. Hence, $\mathcal{I}_{p}(f)=\operatorname{deg} \frac{f-\zeta}{|f-\zeta|}$.
Let $\left\{\xi_{1}, \ldots, \xi_{k}\right\}=f^{-1}(\zeta) \cap B_{\epsilon}(p)$. Choose two by two disjoint small spheres $S_{\delta_{j}}^{2 n-1}\left(\xi_{j}\right)$, centered at ξ_{j} and satisfying $S_{\delta_{j}}^{2 n-1}\left(\xi_{j}\right) \cap S_{\epsilon}^{2 n-1}(p)=\emptyset$. Consider the oriented manifold

$$
X=\bar{B}_{\epsilon}(p) \backslash \cup_{j=1}^{k} B_{\delta_{j}}\left(\xi_{j}\right)
$$

Its boundary is the disjoint union

$$
\partial X=S_{\epsilon}^{2 n-1}(p) \amalg S_{\delta_{j}}^{2 n-1}\left(\xi_{j}\right) \amalg \cdots \amalg S_{\delta_{k}}^{2 n-1}\left(\xi_{k}\right) .
$$

The map $\varphi=\frac{f-\zeta}{|f-\zeta|}: \partial X \rightarrow S_{1}^{2 n-1}(0)$ admits the obvious smooth extension $\frac{f-\zeta}{|f-\zeta|}$ to all of X. By proposition 2.1.6 we get $\operatorname{deg} \varphi=0$ but, due to the orientation of X,

$$
\operatorname{deg} \varphi=\mathcal{I}_{p}(f)-\mathcal{I}_{\xi_{1}}(f-\zeta)-\cdots-\mathcal{I}_{\xi_{k}}(f-\zeta)
$$

Hence, $\mathcal{I}_{p}(f)=\mathcal{I}_{\xi_{1}}(f-\zeta)+\cdots+\mathcal{I}_{\xi_{k}}(f-\zeta)=k$ since f is biholomorphic at each ξ_{j} and then $\mathcal{I}_{\xi_{k}}(f-\zeta)=1$ by proposition 2.1.13.

Example 2.1.16 Let $f\left(z_{1}, z_{2}\right)=\left(z_{1}^{2}, z_{1}+z_{2}^{3}\right)$. Then $f^{-1}(0)=\{0\}$ and the index $\mathcal{I}_{0}(f)$ is given by the number of solutions of the equations $z_{1}^{2}=\zeta_{1}$ and $z_{1}+z_{2}^{3}=\zeta_{2}$ where $0<\left|\left(\zeta_{1}, \zeta_{2}\right)\right| \ll 1$. We immediately obtain $\mathcal{I}_{0}(f)=6$.

More generally we have the
Theorem 2.1.17 Let $X \subset \mathbb{C}^{n}$ be a compact and connected smooth manifold with boundary, $\operatorname{dim}_{\mathbb{R}} X=2 n$. Let f be a holomorphic map $f: U \rightarrow \mathbb{C}^{n}$ where U is a domain containing $X, p \in X \backslash \partial X, f(p)=0$ and $f^{-1}(0) \cap \partial X=$ Ø. Suppose the degree of the map

$$
\varphi=\frac{f}{|f|}: \partial X \longrightarrow S_{1}^{2 n-1}(0)
$$

is k. Then, the equation $f=0$ has a finite number of solutions in the interior of X and the sum of the indices of f at these points is precisely k.

Proof: Assume we have $k+1$ distinct points $\xi_{1}, \ldots, \xi_{k+1}$ in the interior of X satisfying $f\left(\xi_{j}\right)=0$. Choose two by two disjoint small spheres $S_{\delta_{j}}^{2 n-1}\left(\xi_{j}\right)$, centered at ξ_{j} and satisfying $S_{\delta_{j}}^{2 n-1}\left(\xi_{j}\right) \cap \partial X=\emptyset$. Consider the oriented manifold

$$
\tilde{X}=X \backslash \cup_{j=1}^{k+1} B_{\delta_{j}}\left(\xi_{j}\right) .
$$

Its boundary is the disjoint union

$$
\partial \tilde{X}=\partial X \amalg S_{\delta_{j}}^{2 n-1}\left(\xi_{j}\right) \amalg \cdots \amalg S_{\delta_{k+1}}^{2 n-1}\left(\xi_{k+1}\right) .
$$

The map $\tilde{\varphi}: \partial \tilde{X} \rightarrow S_{1}^{2 n-1}(0), \tilde{\varphi}=f /|f|$, extends smoothly as $f /|f|$: $\tilde{X} \rightarrow S_{1}^{2 n-1}(0)$ and so, by 2.1.6, $\operatorname{deg} \tilde{\varphi}=0$. But, keeping in mind the orientation of $\tilde{X}, \operatorname{deg} \tilde{\varphi}=\operatorname{deg} \varphi-\mathcal{I}_{\xi_{1}}(f)-\cdots-\mathcal{I}_{\xi_{k+1}}(f)$. Hence, $\operatorname{deg} \varphi=$ $\mathcal{I}_{\xi_{1}}(f)+\cdots+\mathcal{I}_{\xi_{k+1}}(f)$. Now note that the above proposition 2.1.15 tells us that $\mathcal{I}_{\xi_{j}}(f)$ is a positive integer, because it is the number of elements of a finite non empty set. We conclude $\operatorname{deg} \varphi \geq k+1$ which is absurd. Therefore, we have at most k solutions of the equation $f=0$ in the interior of X, and the reasoning above shows that the sum of the indices of f at these points is exactly k.

From this we derive the
Theorem 2.1.18 (Additive character of the Poincaré Hopf index) Suppose we have a holomorphic map germ f from \mathbb{C}^{n} to \mathbb{C}^{n} and p an isolated root of $f=0$. Consider a holomorphic deformation f_{λ} of the germ $f=$
f_{0}, depending on the complex parameter λ. Then, as λ varies in a small neighborhood of 0 , the root p decomposes into a finite number of roots of f_{λ} and the sum of the indices of f_{λ} at these roots is equal to the index of f_{0} at p.

Proof: Suppose $p=0$ and take a ball $B_{\delta}(0)$ with δ so small that f has no zeros on the sphere $\partial B_{\delta}(0)$. Let $\delta_{1}>0$ be such that if $|\lambda| \leq \delta_{1}$, then f_{λ} has no zeros on the sphere $\partial B_{\delta}(0)$. Put

$$
\inf _{\substack{|\lambda| \leq \delta_{1} \\ z \in \partial B_{\delta}(0)}}\left|f_{\lambda}(z)\right|=K>0 .
$$

Given $\epsilon<K$ there exists $\delta_{2}>0$ such that if $|\lambda| \leq \delta_{2}$, then

$$
\sup _{\partial B_{\delta}(0)}\left|f(z)-f_{\lambda}(z)\right|<\epsilon .
$$

Let $\delta_{3}=\min \left\{\delta_{1}, \delta_{2}\right\}$. We claim that, for $|\lambda|<\delta_{3}$ the maps

$$
\frac{f_{\lambda}}{\left|f_{\lambda}\right|}: \partial B_{\delta}(0) \longrightarrow S_{1}^{2 n-1}(0)
$$

are homotopic. It's enough to show they are homotopic to $f=f_{0}$. Consider $\varphi_{t}=(1-t) f+t f_{\lambda}$ and suppose there are $t_{0} \in(0,1)$ and $z_{0} \in \partial B_{\delta}(0)$ such that $\varphi_{t_{0}}\left(z_{0}\right)=0$. This gives

$$
f\left(z_{0}\right)=\frac{-t_{0}}{1-t_{0}} f_{\lambda}\left(z_{0}\right)
$$

But then

$$
\epsilon>\left|f\left(z_{0}\right)-f_{\lambda}\left(z_{0}\right)\right|=\frac{1}{1-t_{0}}\left|f_{\lambda}\left(z_{0}\right)\right| \geq \frac{K}{1-t_{0}}>K
$$

a contradiction. Hence, $\varphi_{t}(z)$ never vanishes and gives the desired homotopy $\frac{\varphi_{t}(z)}{\left|\varphi_{t}(z)\right|}$
Now,

$$
\mathcal{I}_{0}(f)=\operatorname{deg} \frac{f}{|f|}=\operatorname{deg} \frac{f_{\lambda}}{\left|f_{\lambda}\right|}=\sum_{\xi_{i} \in f_{\lambda}^{-1}(0)} \mathcal{I}_{\xi_{i}}\left(f_{\lambda}\right) .
$$

Definition 2.1.19 Let $f, g:\left(\mathbb{C}^{n}, p\right) \rightarrow \mathbb{C}^{n}$ be two holomorphic map germs. f and g are algebraically equivalent, or A-equivalent, if there is a holomorphic map germ $A:\left(\mathbb{C}^{n}, p\right) \rightarrow \mathrm{GL}(n ; \mathbb{C})$ such that

$$
f(z)=A(z) g(z) .
$$

The Poincaré Hopf index is invariant under A-equivalence, more precisely:

Proposition 2.1.20 If $f, g:\left(\mathbb{C}^{n}, p\right) \rightarrow \mathbb{C}^{n}$ are A-equivalent and $f^{-1}(f(p))=$ $\{p\}$, then $\mathcal{I}_{p}(f)=\mathcal{I}_{p}(g)$.

Proof: First of all recall that $\mathrm{GL}(n ; \mathbb{C})$ is open, dense and connected in $\mathrm{M}(n ; \mathbb{C})$ (this is so since $\mathrm{GL}(n ; \mathbb{C})=\mathrm{M}(n ; \mathbb{C}) \backslash \operatorname{det}^{-1}(0)$ and det $=0$ defines a real codimension two subvariety of $\mathrm{M}(n ; \mathbb{C}))$. Let $V \subset G L(n ; \mathbb{C})$ be a small contractible open neighborhood of $A(p)$. Then there is a smooth homotopy $G(z, t)$ such that $G(z, 0)=A(z) \in V$ and $G(z, 1)=A(p)$. It follows that

$$
\frac{G(z, t) g(z)}{|G(z, t) g(z)|}
$$

is a smooth homotopy between $\frac{f(z)}{|f(z)|}=\frac{A(z) g(z)}{|A(z) g(z)|}$ and $\frac{A(p) g(z)}{|A(p) g(z)|}$. Now choose a smooth real path γ in $\mathrm{GL}(n ; \mathbb{C})$ such that $\gamma(0)=A(p), \gamma(1)=I$. Then $\frac{\gamma(t) g(z)}{|\gamma(t) g(z)|}$ gives a smooth homotopy between $\frac{A(p) g(z)}{|A(p) g(z)|}$ and $\frac{g(z)}{|g(z)|}$.

2.2 The Milnor number

2.2.1 First results on the multiplicity

We start by introducting some notations:
\mathcal{O}_{p} denotes the (local) ring of germs of holomorphic functions at $p \in \mathbb{C}^{n}$. \mathcal{O}_{p} is a \mathbb{C}-algebra.
\mathfrak{M}_{p} denotes the maximal ideal of \mathcal{O}_{p} that is,

$$
\mathfrak{M}_{p}=\left\{h \in \mathcal{O}_{p}: h(p)=0\right\} .
$$

Given $f:\left(\mathbb{C}^{n}, p\right) \rightarrow \mathbb{C}^{k}, f=\left(f_{1}, \ldots, f_{k}\right)$, we denote by \mathfrak{T}_{f} the ideal in \mathcal{O}_{p} generated by f_{1}, \ldots, f_{k} that is,

$$
\mathfrak{T}_{f}=\left\{h_{1} f_{1}+\cdots+h_{k} f_{k}: h_{j} \in \mathcal{O}_{p}\right\}=\left\langle f_{1}, \ldots, f_{k}\right\rangle_{\mathcal{O}_{p}} .
$$

Definition 2.2.1 Let $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ. The local algebra of f at p is the quotient \mathbb{C}-algebra

$$
\mathcal{Q}_{f}=\mathcal{O}_{p} / \mathfrak{T}_{f}
$$

A germ of biholomorphism $\psi:\left(\mathbb{C}^{n}, p\right) \hookleftarrow$ induces a \mathbb{C}-algebra isomorphism $\psi^{*}: \mathcal{O}_{p} \rightarrow \mathcal{O}_{p}$ by $\psi^{*}(f)=f \circ \psi$ hence, \mathcal{Q}_{f} is independent of the choice of coordinates.

Definition 2.2.2 Let $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ. The multiplicity of f at p, or Milnor number of f at p, noted $\mu_{p}(f)$, is the dimension of the \mathbb{C}-linear space \mathcal{Q}_{f}.

Example 2.2.3 Let $f=\left(f_{1}, f_{2}\right)=\left(z_{1}^{2}, z_{1}+z_{2}^{3}\right), p=0$ (recall example 2.1.16). We have $z_{1}^{2}=f_{1} \in \mathfrak{T}_{f}, z_{1} z_{2}^{3}=z_{1} f_{2}-f_{1} \in \mathfrak{T}_{f}$ and $z_{2}^{6}=z_{2}^{3} f_{2}-z_{1} z_{2}^{3} \in$ \mathfrak{T}_{f}. On the other hand, $z_{2}^{3} \equiv-z_{1} \bmod \mathfrak{T}_{f}, z_{1} z_{2} \equiv-z_{2}^{4} \bmod \mathfrak{T}_{f}$ and $z_{1} z_{2}^{2} \equiv-z_{2}^{5} \bmod \mathfrak{T}_{f}$. Hence, a basis of the \mathbb{C}-linear space \mathcal{Q}_{f} is given by $\left\{1, z_{1}, z_{2}, z_{1} z_{2}, z_{2}^{2}, z_{1} z_{2}^{2}\right\}$ and we get $\mu_{0}(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}=6$.

Lemma 2.2.4 Let $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ of multiplicity μ at p. Given any collection of μ germs of functions in \mathfrak{M}_{p}, h_{1}, \ldots, h_{μ}, their product $h_{1} \cdots h_{\mu}$ lies in \mathfrak{T}_{f}.

Proof: Consider the $\mu+1$ germs $H_{1}=1, H_{2}=h_{1}, H_{3}=h_{1} \cdot h_{2}, \ldots$, $H_{\mu+1}=h_{1} \cdots h_{\mu}$. Since $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}=\mu$, their classes in \mathcal{Q}_{f} are linearly dependent and so there are complex numbers a_{0}, \ldots, a_{μ} such that

$$
a_{0}+a_{1} H_{2}+\cdots+a_{\mu} H_{\mu+1} \in \mathfrak{T}_{f}
$$

Let k be the smallest integer such that $a_{k} \neq 0$. Then

$$
\begin{aligned}
& a_{k} H_{k+1}+a_{k+1} H_{k+2}+\cdots+a_{\mu} H_{\mu+1}= \\
& H_{k+1}\left(a_{k}+a_{k+1} \frac{H_{k+2}}{H_{k+1}}+\cdots+a_{\mu} \frac{H_{\mu+1}}{H_{k+1}}\right) \in \mathfrak{T}_{f}
\end{aligned}
$$

But the factor $a_{k}+a_{k+1} \frac{H_{k+2}}{H_{k+1}}+\cdots+a_{\mu} \frac{H_{\mu+1}}{H_{k+1}}$ is a unit in \mathcal{O}_{p} (which means it is algebraically invertible) and therefore $H_{k+1} \in \mathfrak{T}_{f}$. It follows that $H_{\mu+1}=H_{k+1} h_{k+1} h_{k+2} \cdots h_{\mu} \in \mathfrak{T}_{f}$.

The usefulness of this lemma will be exploited below, but first recall that a holomorphic function $F\left(z_{1}, \ldots, z_{n}\right)$, defined around $p=\left(p_{1}, \ldots, p_{n}\right)$, is expressible in the form

$$
F=F_{m}+F_{m+1}+\cdots+F_{m+\ell}+\cdots \quad F_{m} \not \equiv 0
$$

where F_{j} is a homogeneous polynomial of degree j in the variables $z_{1}-$ $p_{1}, \ldots, z_{n}-p_{n}$. The number m is called the order of F at p.

Proposition 2.2.5 Let $f, g:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be holomorphic map germs where f has multiplicity μ. Suppose each component of the difference $g-f$ has an expansion of the form $g_{i}-f_{i}=F_{i \mu+r_{i}}+F_{i \mu+r_{i}+1}+\cdots$ with $r_{i} \geq 1$. Then f and g are A-equivalent.

Proof: Write $F_{i \mu+\ell}$ as

$$
F_{i \mu+\ell}=\sum_{J} a_{i J}\left(z_{1}-p_{1}\right)^{j_{1}} \cdots\left(z_{n}-p_{n}\right)^{j_{n}}
$$

with $j_{1}+\cdots+j_{n}=|J|=\mu+\ell$. Hence, each term is a product of $\mu+\ell>\mu$ functions in \mathfrak{M}_{p} and by lemma 2.2 .4 we can write each one as

$$
a_{i J}\left(z_{1}-p_{1}\right)^{j_{1}} \cdots\left(z_{n}-p_{n}\right)^{j_{n}}=g_{J 1} f_{1}+\cdots+g_{J n} f_{n}
$$

Observe that the functions $g_{J k}$ lie in \mathfrak{M}_{p} because the left side is of degree $\mu+\ell>\mu$. We conclude $F_{i \mu+\ell}=\sum_{j} b_{i j}^{(\mu+\ell)} f_{j}$ with $b_{i j}^{(\mu+\ell)} \in \mathfrak{M}_{p}$. Summing over ℓ we get $g_{i}-f_{i}=\sum_{j} c_{i j} f_{j}, c_{i j} \in \mathfrak{M}_{p}$.

This gives $g=(I+C) f, C=\left(c_{i j}\right)$. Since $C(p)=0$ the matrix $I+C$ is invertible in a neighborhood of p and the proposition is proved.

Proposition 2.2.6 If f and g are holomorphic A-equivalent map germs then, they have the same multiplicity at p.

Proof: Since $f(z)=A(z) g(z)$ we have $\mathfrak{T}_{f} \subset \mathfrak{T}_{g}$ and, because $A(z)$ is invertible, $\mathfrak{T}_{g} \subset \mathfrak{T}_{f}$ so that $\mathfrak{T}_{f}=\mathfrak{T}_{g}$.

Exercise 3 Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be an invertible linear transformation. Show that $\mu_{0}(T)=1$.

Proposition 2.2.7 If $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is the germ of a biholomorphism then, $\mu_{0}(f)=1$.

Proof: In fact, we have $f(z)=f^{\prime}(0) . z+F_{2}(z)+F_{3}(z)+\cdots$ and so $f(z)-$ $f^{\prime}(0) . z=F_{2}(z)+F_{3}(z)+\cdots$. By the above exercise $\mu_{0}\left(f^{\prime}(0)\right)=1$, by proposition 2.2.5 f and $f^{\prime}(0)$ are A-equivalent and, by proposition 2.2.6, $\mu_{0}(f)=\mu_{0}\left(f^{\prime}(0)\right)$.

Definition 2.2.8 A Pham map (see [Pham]) is a map $\Upsilon: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ of the form

$$
\Upsilon^{J}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{j_{1}}, z_{2}^{j_{2}}, \ldots, z_{n}^{j_{n}}\right)
$$

where $J=\left(j_{1}, j_{2}, \ldots, j_{n}\right) \in \mathbb{N}^{n}, j_{k} \geq 1, \forall k$.
Lemma 2.2.9 $\mathcal{I}_{0}\left(\Upsilon^{J}\right)=\mu_{0}\left(\Upsilon^{J}\right)$.
Proof: This is shown by direct calculation. By 2.1.15, $\mathcal{I}_{0}\left(\Upsilon^{J}\right)$ is the number of solutions of $z_{1}^{j_{1}}=\xi_{1}, \ldots, z_{n}^{j_{n}}=\xi_{n}$, for $\left(\xi_{1}, \ldots, \xi_{n}\right)$ a regular value of Υ^{J}, which is $j_{1} j_{2} \cdots j_{n}$. On the other hand, a basis for the local algebra of Υ^{J} at 0 is formed by the classes of the monomials

$$
z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}, \quad 0 \leq m_{1}<j_{1}, \ldots, 0 \leq m_{n}<j_{n}
$$

There are $j_{1} j_{2} \cdots j_{n}$ of such.

Proposition 2.2.10 Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a germ with multiplicity μ at 0. Consider the Pham map

$$
\Upsilon^{[\mu+1]}, \quad[\mu+1]=\underbrace{(\mu+1, \ldots, \mu+1)}_{\mathrm{n} \text { components }}
$$

and the holomorphic deformation $\Upsilon_{\lambda}^{[\mu+1]}=\Upsilon^{[\mu+1]}+\lambda f, \lambda$ in a small neighborhood of 0 in \mathbb{C}. Then f is A-equivalent to $\Upsilon_{\lambda}^{[\mu+1]}$ for $\lambda \neq 0$.

Proof: Note that $\Upsilon_{\lambda}^{[\mu+1]}-\lambda f=\Upsilon^{[\mu+1]}$ and all components of $\Upsilon^{[\mu+1]}$ have degree $>\mu$. By proposition 2.2.5, $\Upsilon_{\lambda}^{[\mu+1]}$ is A-equivalent to λf. Since λf is obviously A-equivalent to f the result follows.

Before we proceed to consider the question of additivity of the Milnor number (as we did for the Poincaré Hopf index) let us give a result which is very helpful in understanding the multiplicity.

Theorem 2.2.11 Let $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ. $\mu_{p}(f)$ is finite if, and only if, p is an isolated point in $f^{-1}(0)$.

Proof: Suppose $\mu_{p}(f)<\infty$. Invoke lemma 2.2.4 to write, for $i=1, \ldots, n$,

$$
\left(z_{i}-p_{i}\right)^{\mu}=\sum_{j} g_{i j} f_{j}
$$

If we had a sequence $\left(p_{k}\right)=\left(\left(p_{1 k}, \ldots, p_{n k}\right)\right) \rightarrow p$ with $p_{k} \neq p$ and $f\left(p_{k}\right)=$ 0 then, since the $g_{i j}$ are defined in a neighborhood of p, we would have $p_{i k}-p_{i}=0$ for all i, which is absurd.

To prove the converse we invoke Hilbert's zero-theorem (see [Gu], p. 53). Suppose p is isolated in $f^{-1}(0)$. Then, there exist $m_{i} \geq 1$ such that the germ $\left(z_{i}-p_{i}\right)^{m_{i}} \in \mathfrak{T}_{f}, i=1, \ldots, n$. It follows that $\mu_{p}(f)<\infty$.

2.2.2 The preparation theorem

Definition 2.2.12 A Weierstrass polynomial of degree $k>0$ is an element $h \in \mathcal{O}_{0, n-1}\left[z_{n}\right]$ of the form

$$
h=z_{n}^{k}+a_{1} z_{n}^{k-1}+\ldots+a_{k-1} z_{n}+a_{k}
$$

where the coefficients a_{j} are germs at $0 \in \mathbb{C}^{n-1}$ which vanish at 0 , that is, $a_{j} \in \mathfrak{M}_{0, n-1} \subset \mathcal{O}_{0, n-1}, 1 \leq j \leq k$.

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$ be a holomorphic function germ. f is regular of order k in z_{n} if $f\left(0, \ldots, 0, z_{n}\right)=c_{k} z_{n}^{k}+\cdots$, where $c_{k} \neq 0$, that is, $f\left(0, \ldots, 0, z_{n}\right)$ has a zero of order k at $0 \in \mathbb{C}$.

The following is a fundamental result:
Theorem 2.2.13 (Weierstrass preparation theorem) Suppose $f \in \mathcal{O}_{0, n}$ is regular of order k in z_{n}. Then, there is a unique Weierstrass polynomial $h \in \mathcal{O}_{0, n-1}\left[z_{n}\right]$, of degree k in z_{n}, such that $f=u h$, where $u \in \mathcal{O}_{0, n}$ is a unit.

Proof: The proof is given in the remark below.

Example 2.2.14 The holomorphic version of the implicit function theorem follows immediately from 2.2.13. Suppose $f(0)=0$ and $\partial f / \partial z_{n}(0) \neq 0$ (this is the same as to say f is regular of order 1 in z_{n}). Then, in a neighborhood of 0 we have $f\left(z_{1}, \ldots, z_{n}\right)=u(z)\left(z_{n}+a_{1}\left(z_{1}, \ldots, z_{n-1}\right)\right), u(0) \neq 0$ and a_{1} unique. Hence, the level set $f=0$ is described by $z_{n}=-a_{1}\left(z_{1}, \ldots, z_{n-1}\right)$.

Theorem 2.2.13 is a consequence of the more general
Theorem 2.2.15 (Weierstrass division theorem) Suppose $h \in \mathcal{O}_{0, n-1}\left[z_{n}\right]$ is a Weierstrass polynomial of degree k. Then, any $f \in \mathcal{O}_{0, n}$ can be written uniquely in the form

$$
f=g h+R
$$

where $g \in \mathcal{O}_{0, n}$ and $R \in \mathcal{O}_{0, n-1}\left[z_{n}\right]$ is a polynomial in z_{n} of degree $<k$. Moreover, if $f \in \mathcal{O}_{0, n-1}\left[z_{n}\right]$, then $g \in \mathcal{O}_{0, n-1}\left[z_{n}\right]$.

Proof: See [Gu].

Remark 3 To see why theorem 2.2.15 implies theorem 2.2 .13 we do as follows: let f be regular of order k and consider $H\left(z_{1}, \ldots, z_{n}\right)=z_{n}^{k}$. By the division theorem $f=g H+R$ which reads

$$
f=g z_{n}^{k}+a_{1} z_{n}^{k-1}+\ldots+a_{k-1} z_{n}+a_{k}
$$

with $a_{j} \in \mathcal{O}_{0 n-1}$. If $k=0$ then $f=a_{0}$ and 2.2 .13 holds. If $k \geq 1$ then, since $f(0)=0$, we have $a_{k}(0)=0$ and thus $a_{k} \in \mathfrak{M}_{0 n-1}$. Successive differentiation with respect to z_{n} and evaluation at $z_{n}=0$ shows that $a_{j} \in$ $\mathfrak{M}_{0 n-1}$, for $j=1, \ldots, k-1$. Now, $f\left(0, z_{n}\right)=g\left(0, z_{n}\right) z_{n}^{k}$ and therefore $g\left(0, z_{n}\right)$ is a non zero constant. It follows that g is a unit and 2.2.13 is proved.

Using the above theorem it can be shown that: \mathcal{O}_{p} is a unique factorization domain and \mathcal{O}_{p} is a Noetherian ring (see $[\mathrm{Gu}]$).

We will derive another form, much more general, for this theorem. But first we consider a result from Commutative Algebra.

Let \mathfrak{R} be a commutative ring with identity and \mathfrak{G} an abelian group. \mathfrak{G} is an \mathfrak{R}-module if we can define an action of \mathfrak{R} in \mathfrak{G} :

$$
\mathfrak{R} \times \mathfrak{G} \longrightarrow \mathfrak{G} \quad \text { such that } \quad\left\{\begin{array}{l}
(x+y) \alpha=x \alpha+y \alpha \\
(x y) \alpha=x(y \alpha) \\
x(\alpha+\beta)=x \alpha+x \beta \\
1 . \alpha=\alpha
\end{array}\right.
$$

\mathfrak{G} is finitely generated over \mathfrak{R} if there is a finite number of elements $\alpha_{1}, \ldots, \alpha_{n}$ such that every element $\beta \in \mathfrak{G}$ can be written as a linear combination of the α_{j} with coefficients in $\mathfrak{R}, \beta=x_{1} \alpha_{1}+\cdots,+x_{n} \alpha_{n}$. We have the

Lemma 2.2.16 (Nakayama's lemma) Let \Re be a commutative local ring, $\mathfrak{M} \subset \mathfrak{R}$ its maximal ideal and \mathfrak{G} an \mathfrak{R}-module. Suppose
(i) \mathfrak{G} is finitely generated.
(ii) $\mathfrak{G}=\mathfrak{M} \mathfrak{G}$.

Then $\mathfrak{G}=\{0\}$.
Proof: Let e_{1}, \ldots, e_{n} be a set of generators for \mathfrak{G} over \mathfrak{R}. Since $\mathfrak{G}=\mathfrak{M} \mathfrak{G}$, each e_{k} can be written as $e_{k}=x_{1} \alpha_{1}+\cdots+x_{m} \alpha_{m}$ with $x_{i} \in \mathfrak{M}$. Using the fact that the e_{i} generate \mathfrak{G} we have $\alpha_{i}=\sum_{j=1}^{n} y_{i, j} e_{j}$. Hence, $e_{k}=\sum_{j=1}^{n} z_{k, j} e_{j}$ with $z_{k, j}=\sum_{i=1}^{m} x_{i} y_{i, j} \in \mathfrak{M}$. This amounts to

$$
(I-Z) e=0
$$

where I is the identity $n \times n$ matrix, $Z=\left(z_{k, j}\right), 1 \leq k, j \leq n$, and $e=$ $\left(e_{1}, \ldots, e_{n}\right)$.

Now, \mathfrak{M} is precisely the set of non-invertible elements of \mathfrak{R}. To see this suppose $x \in \mathfrak{M}$ were invertible. Then, $x x^{-1}=1 \in \mathfrak{M} \Rightarrow \mathfrak{M}=\mathfrak{R}$ which is absurd. Conversely, if $x \notin \mathfrak{M}$ then, the ideal \mathfrak{A} generated by x is not contained in \mathfrak{M} and, by maximality, $\mathfrak{A}=\mathfrak{R}$. Thus, there is an element $y \in \mathfrak{R}$ such that $x y=1$ and x is invertible. It follows that $\mathfrak{R} / \mathfrak{M}$ is a field.

Returning to system (\star), the determinant of the the matrix $I-Z$ is of the form $\operatorname{det}(I-Z)=1+x$ with $x \in \mathfrak{M}$. Hence it is invertible and the only solution of the system is $e=0$.

Corollary 2.2.17 Let \mathfrak{G} is a finitely generated \mathfrak{R}-module. Then, $\mathfrak{G} / \mathfrak{M}$. \mathfrak{G} is a finite dimensional vector space over the field $\mathfrak{R} / \mathfrak{M}$. Let $\mathfrak{p}: \mathfrak{G} \rightarrow$ $\mathfrak{G} / \mathfrak{M} . \mathfrak{G}$ be the projection onto the quocient and u_{1}, \ldots, u_{n} be a basis for $\mathfrak{G} / \mathfrak{M} . \mathfrak{G}$. Choose elements $e_{1}, \ldots, e_{n} \in \mathfrak{G}$ such that $\mathfrak{p}\left(e_{i}\right)=u_{i}$. Then the elements of the set $\left\{e_{1}, \ldots, e_{n}\right\}$ generate \mathfrak{G} over \mathfrak{R}.

Proof: To see that $\mathfrak{G} / \mathfrak{M} . \mathfrak{G}$ is a vector space over $\mathfrak{R} / \mathfrak{M}$ is an exercise. Now let $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ be a set of generators of \mathfrak{G} over \mathfrak{R}. Given $u \in \mathfrak{G} / \mathfrak{M}$. \mathfrak{G} there exists $\beta \in \mathfrak{G}$ such that $\mathfrak{p}(\beta)=u$. Write $\beta=x_{1} \alpha_{1}+\cdots+x_{\ell} \alpha_{\ell}$. Then

$$
u=\mathfrak{p}(\beta)=\widetilde{x_{1}} \mathfrak{p}\left(\alpha_{1}\right)+\cdots+\widetilde{x_{\ell}} \mathfrak{p}\left(\alpha_{\ell}\right)
$$

where $\widetilde{x_{j}}$ is the class of x_{j} in $\mathfrak{R} / \mathfrak{M}$. This shows $\left\{\mathfrak{p}\left(\alpha_{1}\right), \ldots, \mathfrak{p}\left(\alpha_{\ell}\right)\right\}$ is a basis for $\mathfrak{G} / \mathfrak{M} . \mathfrak{G}$ and so it is finite dimensional.

Suppose now $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for $\mathfrak{G} / \mathfrak{M} . \mathfrak{G}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ as in the statement. Consider the submodule \mathfrak{B} of \mathfrak{G} generated by $\left\{e_{1}, \ldots, e_{n}\right\}$ and let \mathfrak{C} be the quocient module $\mathfrak{C}=\mathfrak{G} / \mathfrak{B}$. Since \mathfrak{G} is finitely generated, the same holds for \mathfrak{C}.

Let $\alpha \in \mathfrak{G}$. Then, $\mathfrak{p}(\alpha)=\widetilde{x_{1}} u_{1}+\cdots+\widetilde{x_{n}} u_{n}$ and thus $\alpha=x_{1} e_{1}+\cdots+$ $x_{n} e_{n}+t$, where $t \in \mathfrak{M} \mathfrak{G}$. Hence we have $\mathfrak{G}=\mathfrak{B}+\mathfrak{M} \mathfrak{G}$. But then

$$
\mathfrak{C}=\mathfrak{G} / \mathfrak{B}=(\mathfrak{B}+\mathfrak{M} . \mathfrak{G}) / \mathfrak{B}=\mathfrak{M} .(\mathfrak{G} / \mathfrak{B})=\mathfrak{M} . \mathfrak{C} .
$$

By Nakayama's lemma, $\mathfrak{C}=0$ and thus $\mathfrak{G}=\mathfrak{B}$.
Returning to our local ring of interest, let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ be a holomorphic map germ and \mathfrak{G} a $\mathcal{O}_{0 n}$-module. The germ f allow us to consider \mathfrak{G} as an $\mathcal{O}_{0} m^{\text {-module }}$ as follows: it induces a ring homomorphism, the pull-back f^{*}, defined by $f^{*} h=h \circ f$ and then we have an action

$$
\begin{aligned}
\mathcal{O}_{0 m} \times \mathfrak{G} & \longrightarrow \mathfrak{G} \\
(h, \alpha) & \longmapsto\left(f^{*} h\right) \alpha=(h \circ f) \alpha .
\end{aligned}
$$

The next theorem is nontrivial and is a cornerstone of the theory of singulatities of maps. It holds in the real C^{∞} situation as well, where it is known as the Malgrange-Mather preparation theorem (see [Mather]). For our purposes it is enough to present it in the following particular form:

Theorem 2.2.18 (Preparation theorem) Consider a holomorphic map germ $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ and let \mathfrak{G} be a finitely generated $\mathcal{O}_{0 n}$-module. Then:
\mathfrak{G} is a finitely generated $\mathcal{O}_{0 m}$-module (via f^{*}) if, and only if, the \mathbb{C}-linear space $\mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} \cdot \mathfrak{G}\right)$ is finite dimensional.

Proof: Suppose \mathfrak{G} is finitely generated as $\mathcal{O}_{0 m}$-module (via f^{*}). Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a set of generators and choose an element $u \in \mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} . \mathfrak{G}\right)$. If $\mathfrak{p}: \mathfrak{G} \rightarrow \mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} \cdot \mathfrak{G}\right)$ is the natural projection, then $u=\mathfrak{p}(\alpha)$ for some $\alpha \in \mathfrak{G}$. Now, α can be written as $\alpha=\left(h_{1} \circ f\right) e_{1}+\cdots+\left(h_{k} \circ f\right) e_{k}$. Each $h_{j} \in \mathcal{O}_{0 m}$ has an expansion $h_{j}=c_{j}+H_{j}$ where $c_{j} \in \mathbb{C}$ and $H_{j} \in \mathfrak{M}_{0 m}$. Thus, $h_{j} \circ f=c_{j}+\varphi$ with $\varphi \in f^{*} \mathfrak{M}_{0, m}$. We have

$$
u=\mathfrak{p}(\alpha)=c_{1} \mathfrak{p}\left(e_{1}\right)+\cdots+c_{n} \mathfrak{p}\left(e_{n}\right)
$$

and the elements $\mathfrak{p}\left(e_{1}\right), \ldots, \mathfrak{p}\left(e_{n}\right)$ generate $\mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} \cdot \mathfrak{G}\right)$.
The other direction is the nontrivial one and will be proved in three steps.
Case of a submersion. Suppose $n=m+1$ and $f:\left(\mathbb{C} \times \mathbb{C}^{m}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ is the projection $f(w, z)=z$. Note that $f^{*} \mathfrak{M}_{0 m}$ coincides with $\mathfrak{M}_{0 m}$ as a subset of $\mathfrak{M}_{0 m+1}$. Choose $e_{1}, \ldots, e_{k} \in \mathfrak{G}$ such that $\left\{\mathfrak{p}\left(e_{1}\right), \ldots, \mathfrak{p}\left(e_{k}\right)\right\}$ is a basis for $\mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} \cdot \mathfrak{G}\right)$ as a complex vector space. Now, $f^{*} \mathfrak{M}_{0 m} \subset$ $\mathfrak{M}_{0 m+1}$ and there is a natural surjection

$$
\mathfrak{q}: \mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} \cdot \mathfrak{G}\right) \longrightarrow \mathfrak{G} / \mathfrak{M}_{0, m+1} \cdot \mathfrak{G}
$$

thus $\mathfrak{q}\left(\mathfrak{p}\left(e_{1}\right)\right), \ldots, \mathfrak{q}\left(\mathfrak{p}\left(e_{k}\right)\right)$ is a set of generators of $\mathfrak{G} / \mathfrak{M}_{0, m+1} \cdot \mathfrak{G}$. By corollary 2.2 .17 we have that

$$
\begin{equation*}
e_{1}, \ldots, e_{k} \text { generate } \mathfrak{G} \text { as an } \mathcal{O}_{0 m+1} \text {-module. } \tag{I}
\end{equation*}
$$

Next we show that:

$$
\begin{aligned}
& \text { All elements of } \mathfrak{G} \text { have the form } \sum_{j=1}^{k}\left(c_{j} e_{j}+h_{j} e_{j}\right) \\
& \text { with } c_{j} \in \mathbb{C} \text { and } h_{j} \in \mathfrak{M}_{0} \cdot \mathcal{O}_{0 m+1}
\end{aligned}
$$

To see this observe that, since $\left\{\mathfrak{p}\left(e_{1}\right), \ldots, \mathfrak{p}\left(e_{k}\right)\right\}$ form a basis for $\mathfrak{G} /\left(f^{*} \mathfrak{M}_{0, m} . \mathfrak{G}\right)$, every element $\alpha \in \mathfrak{G}$ can be written as $\alpha=c_{1} e_{1}+\cdots+c_{k} e_{k}+\widetilde{\beta}$ with $\widetilde{\beta} \in f^{*} \mathfrak{M}_{0, m} . \mathfrak{G}$. Hence, $\widetilde{\beta}=\sum_{i=1}^{\ell} g_{i} \sigma_{i}$ where $g_{i} \in \mathfrak{M}_{0 m}$ and $\sigma_{i} \in \mathfrak{G}$. By $(I), \sigma_{i}=\sum_{s=1}^{k} \varphi_{s} e_{s}$ with $\varphi_{s} \in \mathcal{O}_{0 m+1}$. Thus, $\widetilde{\beta}=\sum_{s=1}^{k}\left(\sum_{i=1}^{\ell} g_{i} \varphi_{s}\right) e_{s}$. Put $h_{j}=\sum_{i=1}^{\ell} g_{i} \varphi_{j}$ and (II) is proved.

Apply $(I I)$ to the elements $w e_{i}, i=1, \ldots, k$. We get

$$
w e_{i}=\sum_{j=1}^{k}\left(c_{i j} e_{j}+h_{i j} e_{j}\right), \quad c_{i j} \in \mathbb{C}, \quad h_{i j} \in \mathfrak{M}_{0 m} . \mathcal{O}_{0 m+1}
$$

If $\left(\delta_{i j}\right)$ is the identity matrix, then these equations take the form:

$$
\left(w \delta_{i j}-c_{i j}-h_{i j}\right) \cdot e=0
$$

where $e=\left(e_{1}, \ldots, e_{k}\right)$. Let $\left(b_{i j}\right)$ be the matrix whose entries are $b_{i j}=$ $w \delta_{i j}-c_{i j}-h_{i j}$. If $\left(B_{i j}\right)$ is the transpose of the matrix of the cofactors of ($b_{i j}$) (Cramer's rule) then,

$$
\left(B_{i j}\right) \cdot\left(b_{i j}\right)=\operatorname{det}\left(b_{i j}\right) \cdot\left(\delta_{i j}\right)
$$

Set $P(w, z)=\operatorname{det}\left(b_{i j}\right)$. It follows that $P(w, z) e_{i}=0$ for each i. Since $h_{i j} \in \mathfrak{M}_{0 m} . \mathcal{O}_{0 m+1}$ we have that $P(w, 0)=\operatorname{det}\left(w \delta_{i j}-c_{i j}\right)$ is a polynomial in w of order $d \leq k$. Thus, $P(w, 0)=u(w) w^{d}$ with $u(0) \neq 0$ and $P(z, w)$ is regular of order d at $(0,0)$. By the Weierstrass preparation theorem 2.2.13, $P=v H$. Given $\alpha \in \mathfrak{G}$, by (II) again we can write α as $\alpha=\sum_{i=1}^{k}\left(c_{i} e_{i}+\rho_{i} e_{i}\right)$ with $c_{i} \in \mathbb{C}$ and $\rho_{i} \in \mathfrak{M}_{0 m} . \mathcal{O}_{0 m+1}$. By the Weierstrass division theorem 2.2.15

$$
\rho_{i}=q_{i} H+\sum_{j=0}^{d-1} R_{i j}\left(z_{1}, \ldots, z_{m}\right) w^{j} .
$$

But then,

$$
\begin{aligned}
\rho_{i}= & \left(\frac{q_{i}}{v}\right)(v H)+\sum_{j=0}^{d-1} R_{i j}\left(z_{1}, \ldots, z_{m}\right) w^{j}= \\
& \left(\frac{q_{i}}{v}\right) P+\sum_{j=0}^{d-1} R_{i j}\left(z_{1}, \ldots, z_{m}\right) w^{j} .
\end{aligned}
$$

Since $P e_{i}=0$, we have that $\rho_{i} e_{i}=\sum_{j=0}^{d-1} R_{i j}\left(z_{1}, \ldots, z_{m}\right) w^{j} e_{i}$ and therefore

$$
\alpha=\sum_{i=1}^{k}\left(c_{i} e_{i}+\rho_{i} e_{i}\right)=\sum_{i=1}^{k}\left(c_{i} e_{i}+\sum_{j=0}^{d-1} R_{i j}\left(z_{1}, \ldots, z_{m}\right) w^{j} e_{i}\right)
$$

and we conclude that \mathfrak{G} is generated by the $k d$ elements $e_{1}, \ldots, e_{k}, w e_{1}, \ldots, w e_{k}$, $\ldots, w^{d-1} e_{1}, \ldots, w^{d-1} e_{k}$ as an $\mathcal{O}_{0 m}$-module because $R_{i j} \in \mathcal{O}_{0 m}$.
Case of an immersion. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ be a holomorphic map germ of rank n. By the rank theorem we have that, up to changes of coordinates, f is written as

$$
\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(z_{1}, \ldots, z_{n}, 0, \ldots, 0\right) .
$$

Now, any germ $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$ extends holomorphically to $\left(\mathbb{C}^{m}, 0\right)$ (simply define $\left.g\left(z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{m}\right)=g\left(z_{1}, \ldots, z_{n}\right)\right)$. This mea- ns that the map $f^{*}: \mathcal{O}_{0 m} \rightarrow \mathcal{O}_{0 n}$ is a surjection. But then any finite set of generators of \mathfrak{G} as an $\mathcal{O}_{0 n}$-module is also a set of generators for \mathfrak{G} as an $\mathcal{O}_{0 m}$-module.
General case. Given $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ define

$$
\begin{aligned}
F:\left(\mathbb{C}^{n}, 0\right) & \longrightarrow\left(\mathbb{C}^{n}, 0\right) \times\left(\mathbb{C}^{m}, 0\right) \quad \text { by } \\
\xi & \longmapsto(\xi, f(\xi)) .
\end{aligned}
$$

Denoting by $\pi_{i}: \mathbb{C}^{i} \times \mathbb{C}^{m} \rightarrow \mathbb{C}^{i-1} \times \mathbb{C}^{m}$ the projection

$$
\pi_{i}\left(z_{1}, \ldots, z_{i}, w\right)=\left(z_{2}, \ldots, z_{i}, w\right)
$$

we have $f=\pi_{1} \circ \cdots \circ \pi_{n} \circ F$. Since F is an immersion we see that \mathfrak{G} is a finitely generated $\mathcal{O}_{(0,0) n \times m}$-module. Suppose now that $\mathfrak{G} / \mathfrak{M}_{0 m} \cdot \mathfrak{G}$ is a finite dimensional complex vector space. Since $\mathfrak{M}_{0 m} \subset \mathfrak{M}_{(0,0)}{ }_{n-1 \times m}$ we have a surjection

$$
\mathfrak{G} / \mathfrak{M}_{0 m} \cdot \mathfrak{G} \longrightarrow \mathfrak{G} / \mathfrak{M}_{(0,0) n-1 \times m} \cdot \mathfrak{G}
$$

and this last vector space is finite dimensional. Since π_{n} is a submersion, we conclude that \mathfrak{G} is a finitely generated $\mathcal{O}_{(0,0) n-1 \times m \text {-module. Look now at }}$

$$
\pi_{n-1}^{*}: \mathcal{O}_{(0,0) n-2 \times m} \longrightarrow \mathcal{O}_{(0,0) n-1 \times m}
$$

and apply the reasoning of the submersive case. We get \mathfrak{G} a finitely generated $\mathcal{O}_{(0,0) n-2 \times m}$-module. Continuing this way, with π_{n-2}^{*} and so on, we obtain the result. The theorem is proved.

To see this theorem in action, consider a holomorphic map germ f : $\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ of finite multiplicity μ at 0 and let $\mathfrak{G}=\mathcal{O}_{0 n}$. We have

$$
f^{*}: \mathcal{O}_{0 n} \longrightarrow \mathcal{O}_{0 n}
$$

and remark that $f^{*} \mathfrak{M}_{0 n} \cdot \mathcal{O}_{0 n}=\mathfrak{T}_{f}$. The complex vector space $\mathcal{O}_{0 n} / f^{*} \mathfrak{M}_{0 n} . \mathcal{O}_{0 n}$ is finite dimensional because $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0 n} / \mathfrak{T}_{f}=\mu$. By the preparation theorem we have that $\mathcal{O}_{0 n}$ is a finitely generated $\mathcal{O}_{0 n}$-module via f^{*}. Moreover, by corollary $2.2 .17, \mathcal{O}_{0 n}$ is generated by μ elements (via f^{*}). This means the following:
Given $g \in \mathcal{O}_{0 n}$ we can write

$$
g(z)=h_{1}(f(z)) e_{1}(z)+\cdots+h_{\mu}(f(z)) e_{\mu}(z)
$$

with h_{j} and e_{j} in $\mathcal{O}_{0 n}$.
We exploit this prepared form of the germ g as follows:
Lemma 2.2.19 Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ of finite multiplicity μ at 0 . There exist neighborhoods of $0, U$ in the domain and V in the target, such that all germs appearing in the preparation of all polynomials are defined in U and V.

Proof: Consider the finite collection of functions: $1, z_{k}$ and e_{j}, for $1 \leq$ $k \leq n$ and $1 \leq j \leq \mu$. Write each one as

$$
f^{*}\left(h_{1}(w)\right) e_{1}(z)+\cdots+f^{*}\left(h_{\mu}(w)\right) e_{\mu}(z)
$$

Let V be an open set in the target \mathbb{C}^{n} such that all functions h_{ℓ} appearing in the preparation of this collection are defined. Let $U \subset f^{-1}(V) \subset \mathbb{C}^{n}$ be a neighborhood of 0 in which all functions e_{j} are defined. We now proceed by induction on the degree of the polynomials. If P has degree 0 then $P=c \cdot 1$, $c \in \mathbb{C}$. Any polynomial of degree d can be written as

$$
P(z)=\sum z_{j} Q_{j}+c \cdot 1
$$

where the degree of the polynomials Q_{j} is smaller than d. Assuming the lemma to hold for the Q_{j}, it holds also for $z_{j} Q_{j}$ and therefore for P.

2.3 Relation between \mathcal{I} and μ

In this section we show that the Poincaré Hopf index and the Milnor number coincide. First some definitions.

Let $U \subset \mathbb{C}^{n}$ be a domain and denote by $\mathcal{O}(U)$ the \mathbb{C}-algebra of holomorphic functions defined in U. Let \mathfrak{T}_{f} be the ideal of $\mathcal{O}(U)$ generated by the components of a holomorphic map $f: U \rightarrow \mathbb{C}^{n}$.

Definition 2.3.1 The algebra $\mathcal{Q}_{f}(U)$ is the quocient \mathbb{C}-algebra

$$
\mathcal{O}(U) / \mathfrak{T}_{f}
$$

The polynomial subalgebra $\mathcal{Q}_{f}[U]$ is the image of the polynomial algebra $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{\mid U}$ by the quocient map $\mathfrak{q}: \mathcal{O}(U) \rightarrow \mathcal{Q}_{f}(U)$.

Suppose we have a holomorphic map germ $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ of finite multiplicity μ at 0 . Consider a holomorphic deformation f_{λ} of $f, \lambda \in \mathbb{C}^{m}$, $f_{0}=f$.

Lemma 2.3.2 Let $F:\left(\mathbb{C}^{n} \times \mathbb{C}^{m}, 0\right) \rightarrow\left(\mathbb{C}^{n} \times \mathbb{C}^{m}, 0\right)$ be defined by $F(z, \lambda)=$ $\left(f_{\lambda}(z), \lambda\right)$. Then the \mathbb{C}-algebras \mathcal{Q}_{f} and \mathcal{Q}_{F} are isomorphic. Moreover, if e_{1}, \ldots, e_{μ} form a basis for \mathcal{Q}_{f} then, they also form a basis for \mathcal{Q}_{F}.

Proof: Write $F=\left(F_{1}, \ldots, F_{n}, \lambda_{1}, \ldots, \lambda_{m}\right)$ with $F_{j}=f_{j \lambda}$. Then, the ideal generated by the components of F is the same as the ideal \mathfrak{J} generated by $f_{1}, \ldots, f_{n}, \lambda_{1}, \ldots, \lambda_{n}$. But $\mathcal{O}_{n \times m} / \mathfrak{J} \approx \mathcal{O}_{n} / \mathfrak{T}_{f}$ and thus $\mathcal{Q}_{F} \approx \mathcal{Q}_{f}$. Suppose now that e_{1}, \ldots, e_{n} form a basis for the \mathbb{C}-linear space \mathcal{Q}_{f}. Since $\mathcal{Q}_{F} \approx \mathcal{Q}_{f}$ these give also a basis for \mathcal{Q}_{F}.

Lemma 2.3.3 There exists a neighborhood $U_{1} \subset \mathbb{C}^{n}$ of 0 such that, for all $|\lambda|$ sufficiently small, the \mathbb{C}-linear space generated by the images of e_{1}, \ldots, e_{μ} in the algebra $\mathcal{Q}_{f_{\lambda}}\left(U_{1}\right)$ contains the polynomial subalgebra $\mathcal{Q}_{f_{\lambda}}\left[U_{1}\right]$.

Proof: By lemma 2.2.19 we can find a neighborhood $U_{1} \times U_{2} \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$ of 0 and a neighborhood $V \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$ of 0 , which we may suppose convex, with $F\left(U_{1} \times U_{2}\right) \subset V$, such that every polynomial, when restricted to $U_{1} \times U_{2}$, can be written in the form

$$
P(z)=\sum_{j=1}^{\mu} g_{j}(w, \lambda) e_{j}(z), \quad w=f_{\lambda}(z)
$$

By lemma 2.1.14 each g_{j} has an expansion of the form

$$
g_{j}(w, \lambda)=G_{j}(\lambda)+\sum_{i=1}^{n} w_{i} g_{j i}(w, \lambda)
$$

Substituting into the expression for P we get

$$
P(z)=\sum_{j=1}^{\mu} G_{j}(\lambda) e_{j}(z)+\sum_{i=1}^{n} w_{i} h_{i}(z, \lambda), \quad w=f_{\lambda}(z)
$$

Now, $\sum_{i=1}^{n} f_{i \lambda}(z) h_{i}(z, \lambda)$ lies in the ideal $\mathfrak{T}_{f_{\lambda}}\left(U_{1}\right)$ provided $|\lambda|$ is small enough (require $\lambda \in U_{2}$). The lemma is proved.

With this at hand we have the
Proposition 2.3.4 Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ of finite multiplicity μ at 0 . Consider a holomorphic deformation f_{λ} of f, $\lambda \in \mathbb{C}^{m}, f_{0}=f$. There exists a neighborhood $U \subset \mathbb{C}^{n}$ of 0 such that, for $|\lambda|$ sufficiently small, the dimension of the \mathbb{C}-linear space $\mathcal{Q}_{f_{\lambda}}[U]$ is at most μ.

Proof: By lemma 2.3.3, $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f_{\lambda}}[U] \leq \operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f_{\lambda}}(U)$ and, by lemma 2.3.2, $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f_{\lambda}}(U) \leq \mu$.

Lemma 2.3.5 Suppose we have a holomorphic map $f: U \rightarrow \mathbb{C}^{n}, U \subset \mathbb{C}^{n}$ a domain, such that $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}[U]<\infty$. Then, each zero of f in U has finite multiplicity. Moreover, the number of solutions of the equation $f=0$ in U (counted without multiplicities) is bounded by $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}[U]$.

Proof: Denote by ν the $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}[U]$ and let $\xi \in U$ be such that $f(\xi)=$ 0 . Let $\ell_{i}, i=1, \ldots, \nu$, be linear functions vanishing at ξ and consider the $\nu+1$ functions, $1, \ell_{1}, \ell_{1} \ell_{2}, \ldots, \ell_{1} \ell_{2} \cdots \ell_{\nu}$. If \mathfrak{p} is the quocient map $\mathfrak{p}: \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{\mid U} \rightarrow \mathcal{Q}_{f}[U]$ then, the classes $\mathfrak{p}(1), \ldots, \mathfrak{p}\left(\ell_{1} \ell_{2} \cdots \ell_{\nu}\right)$ are linearly dependent. By repeating the same argument as in the proof of lemma 2.2.4, we conclude that there is an element $u \in \mathcal{O}(U), u(\xi) \neq 0$, such that $u \ell_{1} \ell_{2} \cdots \ell_{\nu} \in \mathfrak{T}_{f}(U)$. Then,

$$
u^{-1}\left(u \ell_{1} \ell_{2} \cdots \ell_{\nu}\right)=\ell_{1} \ell_{2} \cdots \ell_{\nu} \in \mathfrak{T}_{\xi f}
$$

We've shown that any collection of ν linear functions in $\mathfrak{M}_{\xi n}$ have their product in $\mathfrak{T}_{\xi f}$. Hence, $\mathfrak{M}_{\xi n}^{\nu} \subset \mathfrak{T}_{\xi f}$ and therefore

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\xi} / \mathfrak{T}_{\xi f} \leq \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\xi} / \mathfrak{M}_{\xi n}^{\nu}<\infty
$$

This shows the first part of the lemma. Suppose now we had $\nu+1$ solutions in U of the equation $f=0$, say $\xi_{0}, \ldots, \xi_{\nu}$. For each $j=0, \ldots, \nu$ choose a polynomial P_{j} such that

$$
P_{j}\left(\xi_{i}\right)= \begin{cases}1 & , \text { if } i=j \\ 0 & , \text { if } i \neq j\end{cases}
$$

Consider a linear combination of the P_{j} satisfying:

$$
c_{0} P_{0}+\cdots+c_{\nu} P_{\nu}=0
$$

Evaluating at ξ_{i} gives $c_{i}=0$ and hence the classes $\mathfrak{p}\left(P_{j}\right), 0 \leq j \leq \nu$, are linearly independent in $\mathcal{Q}_{f}[U]$, which is an absurd.

Consider a holomorphic map $f: U \rightarrow \mathbb{C}^{n}, U \subset \mathbb{C}^{n}$ a domain, and suppose that ξ_{1}, \ldots, ξ_{k} are all the solutions of the equation $f=0$ in U. Look at its germs at the points ξ_{1}, \ldots, ξ_{k} and consider the corresponding local algebras $\mathcal{Q}_{\xi_{i} f}$. The sum

$$
\bigoplus_{i=1}^{k} \mathcal{Q}_{\xi_{i} f}
$$

is called the multilocal algebra of f in U. We define a homomorphism of \mathbb{C}-algebras

$$
\aleph: \mathcal{O}(U) \rightarrow \bigoplus_{i=1}^{k} \mathcal{Q}_{\xi_{i} f}
$$

as follows: given $g \in \mathcal{O}(U)$ take its germs at the points $\xi_{i}, g_{\xi_{i}}$, and look at their images $\widetilde{g_{\xi_{i}}} \in \mathcal{Q}_{\xi_{i} f}$. In other words, $\aleph(g)=\left(\widetilde{\xi_{1}}, \ldots, \widetilde{\xi_{k}}\right)$.

Before exploiting \aleph we introduce some notation. Let $g \in \mathcal{O}(U)$ and $\xi \in U$. The Taylor polynomial of degree ℓ of g at ξ is noted $T_{\xi}^{\ell} g$.

Lemma 2.3.6 Given a finite number of distinct points in U, say ξ_{1}, \ldots, ξ_{k}, and a polynomial P_{i} of degree d_{i}, centered at ξ_{i}, there exists a polynomial Q such that $T_{\xi_{i}}^{d_{i}} Q=P_{i}$.

Proof: Let $Q=Q_{0}+Q_{1}+\cdots+Q_{N}$, a sum of homogeneous polynomials whose coefficients are to be determined. We first solve the system

$$
\begin{gather*}
Q\left(\xi_{1}\right)=P_{1}\left(\xi_{1}\right) \tag{0}\\
\vdots \\
Q\left(\xi_{k}\right)=P_{k}\left(\xi_{k}\right)
\end{gather*}
$$

which is possible if N is large enough. Next we have the systems

$$
\begin{gather*}
\frac{\partial Q}{\partial z_{j}}\left(\xi_{1}\right)=\frac{\partial P_{1}}{\partial z_{j}}\left(\xi_{1}\right) \\
\vdots \tag{1}\\
\frac{\partial Q}{\partial z_{j}}\left(\xi_{k}\right)=\frac{\partial P_{k}}{\partial z_{j}}\left(\xi_{k}\right)
\end{gather*}
$$

By enlarging N we can solve (\star_{1}) without interfering with the solution of $\left(\star_{0}\right)$. Continuing this way we obtain the polynomial Q.

We have the
Lemma 2.3.7 Suppose $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}[U]<\infty$. Then

$$
\aleph\left(\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{\mid U}\right)=\bigoplus_{i=1}^{k} \mathcal{Q}_{\xi_{i} f}
$$

Proof: By lemma 2.3.5 the number of solutions in U of the equation $f=0$ is finite, say ξ_{1}, \ldots, ξ_{k}, and each solution ξ_{i} is of finite multiplicity μ_{i}. If $g \in \mathcal{O}(U)$ then, g and its Taylor polynomial of degree μ_{i} at $\xi_{i}, T_{\xi_{i}}^{\mu_{i}} g$, are
mapped into the same element of $\mathcal{Q}_{\xi_{i} f}$. Choose a polynomial Q such that $T_{\xi_{i}}^{\mu_{i}} Q=T_{\xi_{i}}^{\mu_{i}} g$ (this possible by lemma 2.3.6). Then $\aleph(Q)=\aleph(g)$ and the lemma is proved.

We can now prove the
Proposition 2.3.8 The number of solutions in U, counting multiplicities, of the equation $f=0$ is bounded by $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}[U]$.

Proof: Write $f=\left(f_{1}, \ldots, f_{n}\right)$. Then $\aleph\left(f_{j}\right)=0$ and thus the ideal $\mathfrak{T}_{f}(U)$ is mapped to 0 by \aleph. We then have an induced homomorphism of \mathbb{C}-algebras

$$
\widetilde{\aleph}: \mathcal{Q}_{f}[U] \rightarrow \bigoplus_{i=1}^{k} \mathcal{Q}_{\xi_{i}} f
$$

which is surjective by the previous lemma 2.3.7. Hence,

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f}[U] \geq \sum_{i=1}^{k} \operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{\xi_{i} f}
$$

Proposition 2.3.9 Suppose $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is a holomorphic map germ such that $\mu_{0}(f)<\infty$. Then $\mu_{0}(f) \geq \mathcal{I}_{0}(f)$.

Proof: By theorem 2.2.11, 0 is isolated in $f^{-1}(0)$ and by proposition 2.1.15, $\mathcal{I}_{0}(f)$ is the number of solutions of the equation $f_{\lambda}=f-\lambda=0, \lambda$ a regular value of f with $|\lambda| \ll 1$, in a small neighborhood U of 0 . By lemma 2.3.5

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f_{\lambda}}[U] \geq \mathcal{I}_{0}(f)
$$

and by proposition 2.3.4, $\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f_{\lambda}}[U]$ is finite and

$$
\mu_{0}(f) \geq \operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{f_{\lambda}}[U] .
$$

The proposition is proved.
We finally have the
Theorem 2.3.10 Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a holomorphic map germ. If $\mu_{0}(f)$ is finite, then $\mu_{0}(f)=\mathcal{I}_{0}(f)$.

Proof: This is now a matter of putting together all bits and pieces we've deduced so far. We start by considering a Pham map $\Upsilon^{[\mu+1]}$, where $\mu=$ $\mu_{0}(f)$. By proposition 2.2 .10 the deformation $\Upsilon_{\lambda}^{[\mu+1]}=\Upsilon^{[\mu+1]}+\lambda f, \lambda$ in a small neighborhood of 0 in \mathbb{C}, is A-equivalent to f.

By proposition 2.1.20

$$
\mathcal{I}_{0}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\mathcal{I}_{0}(f)
$$

and by propositions 2.2.6 and 2.2.10

$$
\mu_{0}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\mu_{0}(f)
$$

We now exploit the properties of the Pham map and of its deformation. Fix a ball $B_{\epsilon}(0)$ and a value of the parameter λ in such a way that proposition 2.3.4 holds for $\Upsilon_{\lambda}^{[\mu+1]}$. Let $\left\{\xi_{i}\right\}$ be the solutions in $B_{\epsilon}(0)$ of the equation $\Upsilon_{\lambda}^{[\mu+1]}=0$.

By proposition 2.3.4,

$$
\mu_{0}\left(\Upsilon^{[\mu+1]}\right) \geq \operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{\Upsilon_{\lambda}^{[\mu+1]}}\left[B_{\epsilon}(0)\right]
$$

By proposition 2.3.8,

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{Q}_{\Upsilon_{\lambda}^{[\mu+1]}}\left[B_{\epsilon}(0)\right] \geq \sum_{i} \mu_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)
$$

By proposition 2.3.9,

$$
\mu_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right) \geq \mathcal{I}_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)
$$

By theorem 2.1.17,

$$
\sum_{i} \mathcal{I}_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\operatorname{deg} \frac{\Upsilon_{\lambda}^{[\mu+1]}}{\left|\Upsilon_{\lambda}^{[\mu+1]}\right|}
$$

where this last map is restricted to the sphere $\partial B_{\epsilon}(0)$.
By theorem 2.1.18,

$$
\operatorname{deg} \frac{\Upsilon_{\lambda}^{[\mu+1]}}{\left|\Upsilon_{\lambda}^{[\mu+1]}\right|}=\operatorname{deg} \frac{\Upsilon^{[\mu+1]}}{\left|\Upsilon^{[\mu+1]}\right|}=\mathcal{I}_{0}\left(\Upsilon^{[\mu+1]}\right)
$$

By lemma 2.2.9,

$$
\mathcal{I}_{0}\left(\Upsilon^{[\mu+1]}\right)=\mu_{0}\left(\Upsilon^{[\mu+1]}\right)
$$

It follows that

$$
\sum_{i} \mu_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\sum_{i} \mathcal{I}_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right) .
$$

Since all terms involved are positive and

$$
\mu_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right) \geq \mathcal{I}_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right),
$$

we conclude

$$
\mu_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\mathcal{I}_{\xi_{i}}\left(\Upsilon_{\lambda}^{[\mu+1]}\right) \quad \forall i .
$$

But 0 is one of the solutions ξ_{i} of the equation $\Upsilon_{\lambda}^{[\mu+1]}=0$ and thus

$$
\mu_{0}(f)=\mu_{0}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\mathcal{I}_{0}\left(\Upsilon_{\lambda}^{[\mu+1]}\right)=\mathcal{I}_{0}(f) .
$$

The theorem is proved.

Chapter 3

Grothendieck residues

In this chapter we introduce the concept of point residue due to A . Grothendieck. It embodies the Poincaré Hopf index, the Milnor number, the intersection number of n divisors in \mathbb{C}^{n}, which intersect properly, and has many uses in deep results such as the Baum-Bott theorem, which is a generalization of both the Poincaré Hopf theorem and the Gauss Bonnet theorem in the complex realm. We hope the reader will appreciate such a mathematical construction.

3.1 The Trace map

In this section we prove the Trace theorem, which is a basic result in the understanding of point residues and has its origins in a theorem of Abel. The reference for it is the work of P. Griffiths in [Gr]. The reader is assumed to have some familiarity with differential forms.

We start by looking at a holomorphic map $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, f(0)=0$, with finite multiplicity μ at 0 . By theorems 2.1.18 and 2.3 .10 we see that f satisfies the following property: there is a connected open neighborhood V of 0 such that, for $\zeta \in V, f^{-1}(\zeta)$ is a finite set and the sum of the multiplicities

$$
\sum_{\xi \in f^{-1}(\zeta)} \mu_{\xi}(f-\zeta)=\mu
$$

Redefining $U=f^{-1}(V)$ we have that $f: U \rightarrow V$ satisfies:
(i) f is surjective.
(ii) f is open.
(iii) f is proper.
(iv) for $\zeta \in V, f^{-1}(\zeta)$ is a finite set and the sum of the multiplicities of the zeros of the map $f-\zeta$ is constant throughout V.

Such a map is called a finite map. This is equivalent to saying that $f: U \rightarrow V$ is a ramified holomorphic covering of degree μ.

Let $f: U \rightarrow V$ be as above and η a holomorphic n -form on $U, \eta=$ $g(z) d z_{1} \wedge \cdots \wedge d z_{n}, g \in \mathcal{O}(U)$.

Definition 3.1.1 The trace or push forward of η by f, noted $f_{!}(\eta)$, is the holomorphic n-form defined on the open set $V_{\mathrm{reg}} \subset V$ of regular values of f, obtained by the following procedure:

Let ζ be a regular value of f and $f^{-1}(\zeta)=\left\{\xi_{1}, \ldots, \xi_{\mu}\right\}$. Given an n vector

$$
\left(v_{1}, \ldots, v_{n}\right) \in \underbrace{\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n}}_{\mathrm{n} \text { factors }}
$$

for each component $v_{j} \in \mathbb{C}^{n}$ there is a unique vector $u_{i j} \in \mathbb{C}^{n}$ such that $v_{j}=f^{\prime}\left(\xi_{i}\right) \cdot u_{i j}$. Set

$$
f_{!}(\eta)_{\zeta \cdot}\left(v_{1}, \ldots, v_{n}\right)=\sum_{i=1}^{\mu} \eta_{\xi_{i}} \cdot\left(u_{i 1}, \ldots, u_{i n}\right)
$$

This amounts to do the following: if ζ is a regular value of f and $f^{-1}(\zeta)=$ $\left\{\xi_{1}, \ldots, \xi_{\mu}\right\}$, then there is a neighborhood V_{ζ} of ζ and neighborhoods $U_{\xi_{i}}$ of ξ_{i} such that $f_{\mid U_{\xi_{i}}}: U_{\xi_{i}} \rightarrow V_{\zeta}$ is a biholomorphism. Let f_{i}^{-1} denote the inverse maps $\left(f_{\mid U_{\xi_{i}}}\right)^{-1}$. Then

$$
f_{!}(\eta)_{\mid V_{\zeta}}=\sum_{i=1}^{\mu}\left(f_{i}^{-1}\right)^{*} \eta_{\mid U_{\xi_{i}}}
$$

Let us derive a local expression for $f_{!}(\eta)$. In the target V we take coordinates $w=\left(w_{1}, \ldots, w_{n}\right)$, write $f=\left(f_{1}, \ldots, f_{n}\right)$,

$$
\eta=g(z) d z_{1} \wedge \cdots \wedge d z_{n}
$$

and

$$
f_{!}(\eta)=\operatorname{tr}(w) d w_{1} \wedge \cdots \wedge d w_{n}
$$

If $f_{\mid U_{\xi_{i}}}: U_{\xi_{i}} \rightarrow V_{\zeta}$ is as above we take coordinates $\left(f_{1}, \ldots, f_{n}\right)$ in $U_{\xi_{i}}$. Denoting by $g_{i} d f_{1} \wedge \cdots \wedge d f_{n}$ the expression of η in these coordinates we have that, for $p \in U_{\xi_{i}}$,

$$
\left(\eta_{\mid U_{\xi_{i}}}\right)_{p}=g_{i}\left(f_{1}(p), \ldots, f_{n}(p)\right)\left(d f_{1}\right)_{p} \wedge \cdots \wedge\left(d f_{n}\right)_{p}
$$

Now, if $\left\{\left(e_{1}\right)_{p}, \ldots,\left(e_{n}\right)_{p}\right\}$ is the basis dual to $\left\{\left(d f_{1}\right)_{p}, \ldots,\left(d f_{n}\right)_{p}\right\}$ then,

$$
\left(\eta_{\mid U_{\xi_{i}}}\right)_{p} .\left(\left(e_{1}\right)_{p}, \ldots,\left(e_{n}\right)_{p}\right)=g_{i}\left(f_{1}(p), \ldots, f_{n}(p)\right)
$$

and hence

$$
\operatorname{tr}_{\mid V_{\zeta}}(w)=\sum_{i=1}^{\mu} g_{i}(w)
$$

Remark 4 In $U_{\xi_{i}}$,

$$
g_{i}=\frac{g}{\operatorname{det} J f} \quad \text { where } \quad J f=\left(\frac{\partial f_{i}}{\partial z_{j}}\right)_{1 \leq i, j \leq n}
$$

We've shown that the function

$$
\operatorname{tr}(\eta): V_{\text {reg }} \rightarrow \mathbb{C}
$$

is holomorphic. The Trace theorem asserts that this function admits a holomorphic extension to an open neighborhood of 0 in V. There are two proofs of this fact, one makes use of Remmert's theorem and of Hartogs' extension theorem (see [Gr]) and the other, given in [A-V-GZ], uses Cauchy's integral formula and hence exhibits an integral representation of $\operatorname{tr}(\eta)$. We follow this last one since it will be very useful in the definition of the residue. But before the proof we need some topological preliminaries (see [D-N-F]).

Consider the maps

$$
\begin{aligned}
& |f|: U \longrightarrow \mathbb{R}^{n} \\
& |f|(z)=\left(\left|f_{1}(z)\right|, \ldots,\left|f_{n}(z)\right|\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& |f-w|: U \longrightarrow \mathbb{R}^{n}, \quad w \in V \\
& |f-w|(z)=\left(\left|f_{1}(z)-w_{1}\right|, \ldots,\left|f_{n}(z)-w_{n}\right|\right)
\end{aligned}
$$

Let $\mathbb{D}(0, \epsilon)$ be a polydisc of multiradius $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, centered at $0 \in V$ and \mathbb{T}_{ϵ} its distinguished boundary $\left|w_{1}\right|=\epsilon_{1}, \ldots,\left|w_{n}\right|=\epsilon_{n}$. Set $\Gamma_{\epsilon}=$ $|f|^{-1}(\epsilon) . \Gamma_{\epsilon}$ is a compact real n-cycle in U, which is also a smooth submanifold of U if we take ϵ a regular value of $|f|$. We have as coordinate functions for Γ_{ϵ}, in an open dense set of Γ_{ϵ}, the arguments $\arg f_{i}$ and, from now on, we adopt as orientation for Γ_{ϵ} the one determined by $d \arg f_{1} \wedge \cdots \wedge d \arg f_{n}$.

Fix $w \in V$ and let $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right), \rho_{i}>0$, be a regular value of the map $|f-w|$. Then,

$$
\Gamma_{w, \rho}=\left\{z \in U:\left|f_{1}(z)-w_{1}\right|=\rho_{1}, \ldots,\left|f_{n}(z)-w_{n}\right|=\rho_{n}\right\} \subset U
$$

is a smooth real submanifold of dimension n. The orientation for $\Gamma_{w, \rho}$ is obtained in the same way as that for Γ_{ϵ}.

Now let ζ be a regular value of f and $f^{-1}(\zeta)=\left\{\xi_{1}, \ldots, \xi_{\mu}\right\}$. By choosing ρ sufficiently small so that the torus

$$
\left\{u \in V:\left|u_{1}-\zeta_{1}\right|=\rho_{1}, \ldots,\left|u_{n}-\zeta_{n}\right|=\rho_{n}\right\}
$$

is contained in V_{ζ} we have that $\Gamma_{\zeta, \rho}$ consists of precisely μ tori $\mathbb{T}_{\zeta i}$, corresponding to ξ_{i}. Consider the meromorphic n-form on U, depending on $w \in V$,

$$
\eta_{w}=\frac{\eta}{\prod_{j=1}^{n}\left(f_{j}-w_{j}\right)} .
$$

Lemma 3.1.2 Let ζ be a regular value of f. There exists a neighborhood $W_{\zeta} \subset V_{\zeta}$ of ζ such that, for $w \in W_{\zeta}$,

$$
\operatorname{tr}(\eta)(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{w, \rho}} \eta_{w}
$$

Proof: Choose W_{ζ} in such a way that $\Gamma_{w, \rho} \subset f^{-1}\left(V_{\zeta}\right)$. We've seen that, in V_{ζ}, the local expression of $\operatorname{tr}(\eta)$ is $\sum_{i=1}^{\mu} g_{i}(w)$. Now, by Cauchy's integral formula

$$
g_{i}(w)=\left(\frac{1}{2 \pi i}\right)^{n} \quad \int_{\mathbb{T}_{w i}} \frac{g_{i}\left(f_{1}, \ldots, f_{n}\right) d f_{1} \wedge \cdots \wedge d f_{n}}{\prod_{j=1}^{n}\left(f_{j}-w_{j}\right)}
$$

and thus

$$
\operatorname{tr}(\eta)(w)=
$$

$$
\begin{aligned}
& \left(\frac{1}{2 \pi i}\right)^{n} \sum_{i=1}^{\mu} \int_{\mathbb{T}_{w i}} \frac{g_{i}\left(f_{1}, \ldots, f_{n}\right) d f_{1} \wedge \cdots \wedge d f_{n}}{\prod_{j=1}^{n}\left(f_{j}-w_{j}\right)}= \\
& \left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{w, \rho}} \eta_{w} .
\end{aligned}
$$

Lemma 3.1.3 Let ζ be a regular value of f sufficiently close to $0 \in V$ and ρ appropiately small. Then the cycles Γ_{ϵ} and $\Gamma_{\zeta, \rho}$ are homologous in $U \backslash f^{-1}(\zeta)$ and so $\left[\Gamma_{\epsilon}\right]=\left[\Gamma_{\zeta, \rho}\right] \in H_{n}\left(U \backslash f^{-1}(\zeta) ; \mathbb{Z}\right)$.

Proof: The map $F(z, t)=|f-t \zeta|, 0 \leq t \leq 1$, induces a smooth homotopy $\Gamma_{t \zeta, \epsilon}$ between $\Gamma_{\epsilon}=\Gamma_{0, \epsilon}$ and $\Gamma_{\zeta, \epsilon}$, provided $|\zeta| \ll 1$. On the other hand, for ρ sufficiently small, $\Gamma_{t}=\Gamma_{\zeta, t \rho+\epsilon}$ exhibits a smooth homotopy between $\Gamma_{\zeta, \epsilon}$ and $\Gamma_{\zeta, \rho+\epsilon}$. Now consider the map $G(z, t)=|f-\zeta|-t \epsilon$. If ρ is a regular value of G such that $\Gamma_{\zeta, \rho}$ consists of μ tori, then $G^{-1}(\rho)$ is a submanifold Δ of real dimension $n+1$ of $U \times \mathbb{R}$. The projection $\pi: U \times \mathbb{R} \rightarrow U$ sends $\Delta \cap(U \times[0,1])$ over an n+1-cycle whose boundary is $\Gamma_{\zeta, \epsilon+\rho} \cup \Gamma_{\zeta, \rho}$. Thus, $\Gamma_{\zeta, \epsilon+\rho}$ is homologous to $\Gamma_{\zeta, \rho}$. Since the homotopies above are smooth, we have that Γ_{ϵ} is homologous to $\Gamma_{\zeta, \rho}$. Noticing that all the procedures were carried out in $U \backslash f^{-1}(\zeta)$ we have the assertion of the lemma.

We then have the

Theorem 3.1.4 (Trace theorem) The holomorphic function

$$
\operatorname{tr}(\eta): V_{\text {reg }} \rightarrow \mathbb{C}
$$

admits a holomorphic extension to an open neighborhood of 0 in V.
Proof: We will show that if ϵ is a regular value of the map $|f|$, sufficiently close to 0 and such that both $\mathbb{D}(0, \epsilon)$ and \mathbb{T}_{ϵ} are contained in V then, for $w \in \mathbb{D}(0, \epsilon)$, the function

$$
\Psi(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{\eta}{\prod_{j=1}^{n}\left(f_{j}-w_{j}\right)}
$$

is the desired extension of $\operatorname{tr}(\eta)$. Write $\eta=g(z) d z_{1} \wedge \cdots \wedge d z_{n}$. Then

$$
\Psi(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{g(z) d z_{1} \wedge \cdots \wedge d z_{n}}{\prod_{j=1}^{n}\left(f_{j}-w_{j}\right)}
$$

is holomorphic for $w \in \mathbb{D}(0, \epsilon)$. Let ζ be a regular value of f and ρ small enough so that lemmas 3.1.2 and 3.1.3 hold. Then,

$$
\operatorname{tr}(\eta)(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{w, \rho}} \eta_{w}
$$

in a small neighborhood of W_{ζ} contained in $\mathbb{D}(0, \epsilon)$ by 3.1.2. By 3.1.3,

$$
\operatorname{tr}(\eta)(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{w, \rho}} \eta_{w}=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{\epsilon}} \eta_{w}=\Psi(w)
$$

in W_{ζ}. The theorem is proved.

3.2 The Residue

Let $f=\left(f_{1}, \ldots, f_{n}\right): U \rightarrow V$ be a finite holomorphic map of multiplicity μ and $g \in \mathcal{O}(U)$. Suppose ζ is a regular value of f and let $f^{-1}(\zeta)=$ $\left\{\xi_{1}, \ldots, \xi_{\mu}\right\}$.

Consider the sum

$$
\sum_{i=1}^{\mu} \frac{g\left(\xi_{i}\right)}{\operatorname{det} J f\left(\xi_{i}\right)}
$$

where

$$
J f\left(\xi_{i}\right)=\left(\frac{\partial f_{i}}{\partial z_{j}}\left(\xi_{i}\right)\right)_{1 \leq i, j \leq n}
$$

Definition 3.2.1 The residue at 0 of g relative to f is the limit

$$
\operatorname{Res}_{0}(g, f)=\lim _{\zeta \rightarrow 0} \sum_{i=1}^{\mu} \frac{g\left(\xi_{i}\right)}{\operatorname{det} J f\left(\xi_{i}\right)}
$$

Of course we must show the limit exists. This is a job for the Trace theorem 3.1.4.

Theorem 3.2.2 Let $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, $\epsilon_{i}>0$, and consider the real n-cycle $\Gamma_{\epsilon}=\left\{z \in U:\left|f_{i}(z)\right|=\epsilon_{i}, 1 \leq i \leq n\right\}$ with orientation prescribed by the n-form $d \arg f_{1} \wedge \cdots \wedge d \arg f_{n}$. If ϵ is sufficiently close to 0 then,

$$
\operatorname{Res}_{0}(g, f)=\left(\frac{1}{2 \pi \boldsymbol{i}}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{g d z_{1} \wedge \cdots \wedge d z_{n}}{f_{1} \cdots f_{n}}
$$

Proof: Consider the holomorphic n-form $\eta=g d z_{1} \wedge \cdots \wedge d z_{n}$. In an open and dense subset of U we have

$$
g d z_{1} \wedge \cdots \wedge d z_{n}=\frac{g}{\operatorname{det} J f} d f_{1} \wedge \cdots \wedge d f_{n}
$$

and, due to the manner in which the cycle Γ_{ϵ} is oriented,

$$
\left(\frac{1}{2 \pi \boldsymbol{i}}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{g d z_{1} \wedge \cdots \wedge d z_{n}}{f_{1} \cdots f_{n}}=\left(\frac{1}{2 \pi \boldsymbol{i}}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{g}{\operatorname{det} J f} \frac{d f_{1} \wedge \cdots \wedge d f_{n}}{f_{1} \cdots f_{n}}
$$

Over the open and dense set of regular values of f, the trace of the form η is, by remark 4 ,

$$
\operatorname{tr}(\eta)(w)=\sum_{i=1}^{\mu} \frac{g\left(f_{i}^{-1}(w)\right)}{\operatorname{det} J f\left(f_{i}^{-1}(w)\right)}
$$

By theorem 3.1.4,

$$
\operatorname{tr}(\eta)(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{g d z_{1} \wedge \cdots \wedge d z_{n}}{\prod_{j=1}^{n}\left(f_{j}-w_{j}\right)}
$$

It follows that

$$
\lim _{w \rightarrow 0} \operatorname{tr}(\eta)(w)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{g d z_{1} \wedge \cdots \wedge d z_{n}}{f_{1} \cdots f_{n}}
$$

Exercise 4 Show that, when $n=1$ this reduces to the classical residue for meromorphic functions, introduced by Cauchy.

Properties of the Residue

Property 1 If $a, b \in \mathbb{C}$ and $g, h \in \mathcal{O}(U)$ then,

$$
\operatorname{Res}_{0}(a g+b h, f)=a \operatorname{Res}_{0}(g, f)+b \operatorname{Res}_{0}(h, f)
$$

Moreover, $\operatorname{Res}_{0}(g, f)$ is alternating in the components f_{1}, \ldots, f_{n} of f due to the orientation prescribed for the cycle Γ_{ϵ}.

Property $2 \operatorname{Res}_{0}(\operatorname{det} J f, f)=\mu_{0}(f)=\mathcal{I}_{0}(f)$.
To see this simply note that, if ζ is a regular value of f and $f^{-1}(\zeta)=$ $\left\{\xi_{1}, \ldots, \xi_{\mu}\right\}$, then the sum $\sum_{i=1}^{\mu} \frac{\operatorname{det} J f\left(\xi_{i}\right)}{\operatorname{det} J f\left(\xi_{i}\right)}$ is constant and equal to $\mu_{0}(f)$. Hence,

$$
\operatorname{Res}_{0}(\operatorname{det} J f, f)=\lim _{\zeta \rightarrow 0} \sum_{i=1}^{\mu} \frac{\operatorname{det} J f\left(\xi_{i}\right)}{\operatorname{det} J f\left(\xi_{i}\right)}=\mu_{0}(f) .
$$

Property 3 If f is a biholomorphism, then

$$
\operatorname{Res}_{0}(g, f)=\frac{g(0)}{\operatorname{det} J f(0)}
$$

In this case every point ζ in V is a regular value of f and $f^{-1}(\zeta)=\{\xi\}$. Thus,

$$
\operatorname{Res}_{0}(g, f)=\lim _{\zeta \rightarrow 0} \frac{g(\xi)}{\operatorname{det} J f(\xi)}=\lim _{\xi \rightarrow 0} \frac{g(\xi)}{\operatorname{det} J f(\xi)}=\frac{g(0)}{\operatorname{det} J f(0)}
$$

Property 4 If $g \in \mathfrak{T}_{f}$, then $\operatorname{Res}_{0}(g, f)=0$.
Write $g=h_{1} f_{1}+\cdots+h_{n} f_{n}$. By property 1 it's enough to show $\operatorname{Res}_{0}\left(h_{1} f_{1}, f\right)=$ 0 . Look at the n -form

$$
\omega=\frac{h_{1} f_{1} d z_{1} \wedge \cdots \wedge d z_{n}}{f_{1} \cdots f_{n}}=\frac{h_{1} d z_{1} \wedge \cdots \wedge d z_{n}}{f_{2} \cdots f_{n}}
$$

Let $D_{i}=\left\{z \in U: f_{i}(z)=0\right\}$. ω is holomorphic in the open set $U^{\prime}=$ $U \backslash\left(D_{2} \cup \cdots \cup D_{n}\right) \supset U \backslash\left(D_{1} \cup \cdots \cup D_{n}\right)$. The chain $\Delta_{\epsilon}=\left\{z \in U:\left|f_{1}(z)\right| \leq\right.$ $\left.\epsilon_{1},\left|f_{i}(z)\right|=\epsilon_{i}, 2 \leq i \leq n\right\}$ is contained in U^{\prime} and $\partial \Delta_{\epsilon}= \pm \Gamma_{\epsilon}$. By Stokes theorem

$$
\operatorname{Res}_{0}\left(h_{1} f_{1}, f\right)=\int_{\Gamma_{\epsilon}} \omega= \pm \int_{\Delta_{\epsilon}} d \omega=0
$$

We then have

Theorem 3.2.3 $\operatorname{det} J f \notin \mathfrak{T}_{f}$.
Proof: By property $2, \operatorname{Res}_{0}(\operatorname{det} J f, f)=\mu_{0}(f) \neq 0$. Hence, by property $4, \operatorname{det} J f \notin \mathfrak{T}_{f}$.

Exercise 5 Show that, if $\mu_{0}(f)=1$ then f is a biholomorphism.
Property 5 (Transformation law) Suppose $g: U \rightarrow V$ is a holomorphic map with $g^{-1}(0)=\{0\}$ and that $g(z)=A(z) f(z)$, where $A(z)=\left(a_{i j}(z)\right)$ is a matrix with holomorphic entries. Then,

$$
\operatorname{Res}_{0}(h, f)=\operatorname{Res}_{0}(h \operatorname{det} A, g)
$$

The condition $g(z)=A(z) f(z)$ tells us that $\mathfrak{T}_{g} \subseteq \mathfrak{T}_{f}$. We start by proving the transformation law in case f and g are A-equivalent, so $\mathfrak{T}_{f}=\mathfrak{T}_{g}$. Consider the holomorphic deformation $f_{\lambda}=f-\lambda$ and the corresponding deformation of $g, g_{\lambda}=A(z) f_{\lambda}$. By shrinking V, if necessary, we have that g_{λ} and $f-\lambda$ have the same zeros $\xi_{1}, \ldots, \xi_{\mu}$, for λ a regular value of f. At each point $\xi_{i}, J g_{\lambda}\left(\xi_{i}\right)=A\left(\xi_{i}\right) \cdot J f\left(\xi_{i}\right)$. Hence,

$$
\operatorname{det} J g_{\lambda}\left(\xi_{i}\right)=\operatorname{det} A\left(\xi_{i}\right) \cdot \operatorname{det} J f\left(\xi_{i}\right)
$$

and so

$$
\sum_{i=1}^{\mu} \frac{h\left(\xi_{i}\right)}{\operatorname{det} J f\left(\xi_{i}\right)}=\sum_{i=1}^{\mu} \frac{h\left(\xi_{i}\right) \operatorname{det} A\left(\xi_{i}\right)}{\operatorname{det} J g_{\lambda}\left(\xi_{i}\right)}
$$

which gives

$$
\begin{aligned}
& \operatorname{Res}_{0}(h, f)=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{\mu} \frac{h\left(\xi_{i}\right)}{\operatorname{det} J f\left(\xi_{i}\right)}= \\
& \lim _{\lambda \rightarrow 0} \sum_{i=1}^{\mu} \frac{h\left(\xi_{i}\right) \operatorname{det} A\left(\xi_{i}\right)}{\operatorname{det} J g_{\lambda}\left(\xi_{i}\right)}=\operatorname{Res}_{0}(h \operatorname{det} A, g) .
\end{aligned}
$$

Now for the general case. Choose a smooth family of holomorphic matrices $A_{t}(z)$ with $A_{0}(z)=A(z)$ and $\operatorname{det} A_{t}(0) \neq 0$ for $t \neq 0$. Put $g_{t}(z)=A_{t}(z) f(z)$. Then, for $t \neq 0, g_{t}$ and f are A-equivalent and by the previous case

$$
\operatorname{Res}_{0}(h, f)=\operatorname{Res}_{0}\left(h \operatorname{det} A_{t}, g_{t}\right), \quad \forall t \neq 0
$$

But

$$
\operatorname{Res}_{0}\left(h \operatorname{det} A_{t}, g_{t}\right)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{t \epsilon}} \frac{h \operatorname{det} A_{t} d z_{1} \wedge \cdots \wedge d z_{n}}{g_{t 1} \cdots g_{t n}}
$$

where the n-cycle $\Gamma_{t \epsilon}=\left\{z:\left|g_{t}(z)\right|=\epsilon\right\}$. By choosing ϵ a regular value of $|g|=\left|g_{0}\right|$, we have that $\Gamma_{0 \epsilon}$ is a smooth manifold and that ϵ is a regular value of $\left|g_{t}\right|$ for $|t| \ll 1$. Hence, $\Gamma_{t \epsilon}$ can be realized as a small deformation of the zero section $\Gamma_{0 \epsilon}$ in a tubular neighborhood of $\Gamma_{0 \epsilon}$. It follows that $\Gamma_{0 \epsilon}$ and $\Gamma_{t \epsilon}$ are homologous and thus

$$
\begin{aligned}
& \left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{t \epsilon}} \frac{h \operatorname{det} A_{t} d z_{1} \wedge \cdots \wedge d z_{n}}{g_{t 1} \cdots g_{t n}}= \\
& \left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{0 \epsilon}} \frac{h \operatorname{det} A_{t} d z_{1} \wedge \cdots \wedge d z_{n}}{g_{t 1} \cdots g_{t n}}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \operatorname{Res}_{0}(h, f)=\lim _{t \rightarrow 0} \operatorname{Res}_{0}\left(h \operatorname{det} A_{t}, g_{t}\right)= \\
& \lim _{t \rightarrow 0}\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{0 \epsilon}} \frac{h \operatorname{det} A_{t} d z_{1} \wedge \cdots \wedge d z_{n}}{g_{t 1} \cdots g_{t n}}=\operatorname{Res}_{0}(h \operatorname{det} A, g) .
\end{aligned}
$$

3.3 Local duality

This is perhaps the most interesting property of the residue and deserves a special treatment. Let $f: U \rightarrow V, f^{-1}(0)=\{0\}$, be as before and consider its local algebra \mathcal{Q}_{f} at $0 \in \mathbb{C}^{n}$. By property $1, \operatorname{Res}_{0}(g, f)$ is linear in g and, by property $4, \operatorname{Res}_{0}(g, f)$ depends only on the class \widetilde{g} of g in \mathcal{Q}_{f}. Moreover, by theorem 3.2.3, the class of $\operatorname{det} J f$ defines a nonzero element of \mathcal{Q}_{f}. Therefore, the residue induces a \mathbb{C}-linear functional,

$$
\begin{aligned}
\operatorname{Res}_{0 f}: \mathcal{Q}_{f} & \longrightarrow \mathbb{C} \\
\tilde{g} & \longmapsto \operatorname{Res}_{0}(g, f)
\end{aligned}
$$

which in turn induces a \mathbb{C}-bilinear form

$$
\begin{aligned}
\mathfrak{B}_{0 f}: \mathcal{Q}_{f} \times \mathcal{Q}_{f} & \longrightarrow \mathbb{C} \\
(\widetilde{g}, \widetilde{h}) & \longmapsto \mathcal{R} \operatorname{es}_{0 f}(\widetilde{g} \widetilde{h}) .
\end{aligned}
$$

We now present the Local duality theorem. For a smooth version of this result we refer the reader to [E-L].

Theorem 3.3.1 (Local duality) The bilinear form

$$
\mathfrak{B}_{0 f}: \mathcal{Q}_{f} \times \mathcal{Q}_{f} \longrightarrow \mathbb{C}
$$

is nondegenerate.
Proof: (we follow [G-H]) This assertion can be rephrased as: if $\operatorname{Res}_{0}(g h, f)=$ 0 for all $h \in \mathcal{O}_{0 n}$, then $g \in \mathfrak{T}_{f}$. Also, the fact that the map germ f is finite is equivalent to the following property of its components: the germs $f_{1}, \ldots, f_{n} \in \mathcal{O}_{0 n}$ form a regular sequence (see [Gu]). This means that
f_{i} is not a zero divisor in $\mathcal{O}_{0 n} /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle_{\mathcal{O}_{0 n}}, \quad 1 \leq i \leq n$.
By Hilbert's zero-theorem we know that there exist m_{1}, \ldots, m_{n} such that $z_{i}^{m_{i}} \in \mathfrak{T}_{f}, 1 \leq i \leq n$. Consider then the Pham map

$$
\Upsilon(z)=\left(z_{1}^{m_{1}+1}, \ldots, z_{n}^{m_{n}+1}\right) .
$$

Lemma 3.3.2 $\mathfrak{B}_{0 \Upsilon}$ is nondegenerate.
Proof: This is done by direct calculation. Suppose

$$
h(z)=z_{1}^{j_{1}} \cdots z_{n}^{j_{n}}
$$

and expand g in power series

$$
g(z)=\sum \alpha_{i_{1} \ldots i_{n}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}} .
$$

Then,

$$
\begin{aligned}
& \operatorname{Res}_{0}(g h, \Upsilon)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{\epsilon}} \frac{h g d z_{1} \wedge \cdots \wedge d z_{n}}{z_{1}^{m_{1}+1} \cdots z_{n}^{m_{n}+1}}= \\
& \left(\frac{1}{2 \pi i}\right)^{n} \sum_{i_{1} \ldots i_{n}} \alpha_{i_{1} \ldots i_{n}} \int_{\Gamma_{\epsilon}} \frac{z_{1}^{i_{1}+j_{1}} \cdots z_{n}^{i_{n}+j_{n}} d z_{1} \wedge \cdots \wedge d z_{n}}{z_{1}^{m_{1}+1} \cdots z_{n}^{m_{n}+1}}= \\
& \left(\frac{1}{2 \pi i}\right)^{n} \sum_{i_{1} \ldots i_{n}} \alpha_{i_{1} \ldots i_{n}} \int_{\Gamma_{\epsilon}} \frac{d z_{1} \wedge \cdots \wedge d z_{n}}{z_{1}^{m_{1}+1-i_{1}-j_{1}} \cdots z_{n}^{m_{n}+1-i_{n}-j_{n}}} .
\end{aligned}
$$

Noticing that $\Gamma_{\epsilon}=\left\{z:\left|z_{1}\right|=\epsilon_{1}, \ldots,\left|z_{n}\right|=\epsilon_{n}\right\}$ is just a n-torus we have, by Cauchy's integral formula,

$$
\begin{aligned}
& \left(\frac{1}{2 \pi \boldsymbol{i}}\right)^{n} \sum_{i_{1} \ldots i_{n}} \alpha_{i_{1} \ldots i_{n}} \int_{\Gamma_{\epsilon}} \frac{d z_{1} \wedge \cdots \wedge d z_{n}}{z_{1}^{m_{1}+1-i_{1}-j_{1}} \cdots z_{n}^{m_{n}+1-i_{n}-j_{n}}}= \\
& \alpha_{m_{1}-j_{1}, \ldots, m_{n}-j_{n}} .
\end{aligned}
$$

Hence, to say that $\operatorname{Res}_{0}(g h, \Upsilon)=0$ for all h is the same as to say that $\alpha_{i_{1} \ldots i_{n}}=0$ for $0 \leq i_{1} \leq m_{1}, \ldots, 0 \leq i_{n} \leq m_{n}$. We conclude $g \in$ $\left\langle z_{1}^{m_{1}+1}, \ldots, z_{n}^{m_{n}+1}\right\rangle_{\mathcal{O}_{0 n}} \subset \mathfrak{T}_{f}$.

Lemma 3.3.3 Let $\varphi \in \mathcal{O}_{0 n}$ be such that:
(i) The map $\Phi=\left(\varphi, f_{2}, \ldots, f_{n}\right)$ satisfies $\Phi^{-1}(0)=\{0\}$, where $f=\left(f_{1}, \ldots, f_{n}\right)$.
(ii) $\varphi \in \mathfrak{T}_{f}$, so that $\mathfrak{T}_{\Phi} \subset \mathfrak{T}_{f}$.

If $\mathfrak{B}_{0 \Phi}$ is nondegenerate, then $\mathfrak{B}_{0 f}$ is also nondegenerate.
Proof: Write $\varphi=\sum_{i=1}^{n} a_{i} f_{i}$, so that

$$
\left(\begin{array}{c}
\varphi \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

Given $g=\sum_{i=1}^{n} b_{i} f_{i} \in \mathfrak{T}_{f}$ we have

$$
\begin{gathered}
a_{1} g=b_{1}\left(\sum_{i=1}^{n} a_{i} f_{i}\right)+\sum_{i \geq 2}\left(a_{1} b_{i}-b_{1} a_{i}\right) f_{i}= \\
b_{1} \varphi+\sum_{i \geq 2}\left(a_{1} b_{i}-b_{1} a_{i}\right) f_{i} \in \mathfrak{T}_{\Phi}
\end{gathered}
$$

and thus we have morphisms in both directions,

$$
\psi: \mathcal{O}_{0 n} / \mathfrak{T}_{f} \longrightarrow \mathcal{O}_{0 n} / \mathfrak{T}_{\Phi}
$$

induced by multiplication by a_{1}, and the natural projection

$$
\pi: \mathcal{O}_{0 n} / \mathfrak{T}_{\Phi} \longrightarrow \mathcal{O}_{0 n} / \mathfrak{T}_{f}
$$

Since det $\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{n} \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \ldots & 1\end{array}\right)=a_{1}$ we have, by the Transformation Law (property 5),

$$
\mathfrak{B}_{0 f}(\widetilde{g}, \widetilde{h})=\mathfrak{B}_{0 \Phi}\left(\widetilde{a_{1} g}, \widetilde{h}\right) \quad \forall g, h \in \mathcal{O}_{0 n}
$$

If $\mathfrak{B}_{0 f}(\widetilde{g}, \tilde{h})=0$ for all h, then $\operatorname{Res}_{0}\left(\left(a_{1} g\right) h, \Phi\right)=0$ for all h and, by hypothesis, $a_{1} g \in \mathfrak{T}_{\Phi}$. Write

$$
a_{1} g=c_{1} \varphi+\sum_{i \geq 2} c_{i} f_{i}=a_{1} c_{1} f_{1}+\sum_{i \geq 2}\left(c_{1} a_{i}+c_{i}\right) f_{i}
$$

It follows that

$$
a_{1}\left(g-c_{1} f_{1}\right) \equiv 0 \quad \bmod \left\langle f_{2}, \ldots, f_{n}\right\rangle_{\mathcal{O}_{0 n}}
$$

We have then two possibilities: either $g-c_{1} f_{1} \in\left\langle f_{2}, \ldots, f_{n}\right\rangle_{\mathcal{O}_{0 n}}$ or a_{1} is a zero divisor in $\mathcal{O}_{0 n} /\left\langle f_{2}, \ldots, f_{n}\right\rangle_{\mathcal{O}_{0 n}}$. If a_{1} is a zero divisor, then so is $a_{1} f_{1}$ and the same holds for $\varphi=a_{1} f_{1}+\left(a_{2} f_{2}+\cdots+a_{n} f_{n}\right)$. But this is impossible since $\varphi, f_{2}, \ldots, f_{n}$ is a regular sequence. We are left with $g-c_{1} f_{1} \in\left\langle f_{2}, \ldots, f_{n}\right\rangle_{\mathcal{O}_{0 n}}$ and thus $g \in \mathfrak{T}_{f}$.

Now for the proof of the theorem. The fact that $f_{1}, f_{2}, \ldots, f_{n}$ form a regular sequence is equivalent to the following geometric fact: choose any k distinct integers in $\{1, \ldots, n\}$ and look at the map

$$
\phi(z)=\left(f_{j_{1}}(z), f_{j_{2}}(z), \ldots, f_{j_{k}}(z)\right)
$$

Then, the set $W=\phi^{-1}(0)$ is a subvariety of \mathbb{C}^{n} of dimension $n-k$, that is, $W_{\text {reg }}$, which is the set of points in W at which the derivative $\phi^{\prime}(z)$ attains its maximal rank, is a complex manifold of dimension $n-k$.

With this at hand we do as follows: consider the map $F_{1}=\left(f_{2}, \ldots, f_{n}\right)$. The variety $F_{1}^{-1}(0)$ is an analytic curve through the origin in \mathbb{C}^{n}. Choose a hyperplane H_{1}, passing through 0 , such that $\left\{H_{1}=0\right\} \cap F_{1}^{-1}(0)=\{0\}$. Change coordinates in \mathbb{C}^{n} by setting $H_{1}=z_{1}$. Then the map

$$
\Psi_{1}=\left(z_{1}^{m_{1}+1}, f_{2}, \ldots, f_{n}\right), \quad m_{1} \geq 0
$$

is a finite map.
By repeating this procedure with the map Ψ_{1} and so on, we obtain finite maps

$$
\Psi_{j}=\left(z_{1}^{m_{1}+1}, z_{2}^{m_{2}+1}, \ldots, z_{j}^{m_{j}+1}, f_{j+1}, \ldots, f_{n}\right), \quad m_{1}, \ldots, m_{j} \geq 0
$$

Remark that $\Psi_{0}=f$ and $\Psi_{n}=\Upsilon$. Invoking Hilbert's zero-theorem we choose m_{1}, \ldots, m_{n} such that $z_{j}^{m_{j}} \in \mathfrak{T}_{\Psi_{j-1}}$.

By lemma 3.3.2, $\mathfrak{B}_{0 \Upsilon}$ is nondegenerate and hence, by lemma 3.3.3, $\mathfrak{B}_{0 \Psi_{n-1}}$ is also nondegenerate. Repeated application of lemma 3.3.3 give $\mathfrak{B}_{0 f}$ nondegenerate. The theorem is proved.

Chapter 4

Residues and Kernels

In this chapter we will introduce the Bochner-Martinelli kernel, show that it provides a generalization of Cauchy's integral formula and, after, we indicate how the point residue can be seen through this kernel.

4.1 Complex valued differential forms

Let U be a domain in \mathbb{C}^{n}. Recall the notations of section 2.1.2: we identify $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$ by

$$
\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right) \approx\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)
$$

and consider the complexified of $\mathbb{R}^{2 n}, \mathbb{R}^{2 n} \otimes \mathbb{C}$. We have the following bases of $\mathbb{R}^{2 n} \otimes \mathbb{C}$:

$$
\mathcal{B}_{1}=\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial y_{n}}\right\}
$$

and

$$
\mathcal{B}_{3}=\left\{\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\} .
$$

We observe that \mathcal{B}_{3} induces a decomposition of $\mathbb{R}^{2 n} \otimes \mathbb{C}$ as a direct sum of complex n-dimensional subspaces,

$$
\mathbb{R}^{2 n} \otimes \mathbb{C}=\mathbb{V} \oplus \overline{\mathbb{V}}
$$

where

$$
\mathbb{V}=\left\langle\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}\right\rangle_{\mathbb{C}}, \quad \overline{\mathbb{V}}=\left\langle\frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\rangle_{\mathbb{C}}
$$

At each point $\xi \in U$, the tangent space $T_{\xi} \mathbb{R}^{2 n} \approx \mathbb{R}^{2 n}$ has as basis (defining the canonical orientation)

$$
\left\{\frac{\partial}{\partial x_{1}}(\xi), \frac{\partial}{\partial y_{1}}(\xi), \ldots, \frac{\partial}{\partial x_{n}}(\xi), \frac{\partial}{\partial y_{n}}(\xi)\right\}
$$

with dual basis $\left\{d x_{1 \xi}, d y_{1 \xi}, \ldots, d x_{n \xi}, d y_{n \xi}\right\}$. Hence, with the identification $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$, the complexified tangent space $T_{\xi}^{\mathbb{C}} \mathbb{C}^{n} \approx \mathbb{R}^{2 n} \otimes \mathbb{C}$ admits the decomposition

$$
T_{\xi}^{\mathbb{C}} \mathbb{C}^{n}=\mathbb{V}_{\xi} \oplus \overline{\mathbb{V}}_{\xi}
$$

where

$$
\mathbb{V}_{\xi}=\left\langle\frac{\partial}{\partial z_{1}}(\xi), \ldots, \frac{\partial}{\partial z_{n}}(\xi)\right\rangle_{\mid \mathbb{C}}, \quad \overline{\mathbb{V}}_{\xi}=\left\langle\frac{\partial}{\partial \bar{z}_{1}}(\xi), \ldots, \frac{\partial}{\partial \bar{z}_{n}}(\xi)\right\rangle_{\mid \mathbb{C}}
$$

with the corresponding dual bases

$$
\check{\mathbb{V}}_{\xi}=\left\langle d z_{1 \xi}, \ldots, d z_{n \xi}\right\rangle_{\mid \mathbb{C}}, \quad \check{\mathbb{V}}_{\xi}=\left\langle d \bar{z}_{1 \xi}, \ldots, d \bar{z}_{n \xi}\right\rangle_{\mid \mathbb{C}}
$$

A C^{∞} p-form ω on U is given by a sum of terms of the types $f_{I} d x_{I}$, $g_{J} d y_{J}$ and $h_{K} d(x, y)_{K}$, where $d x_{I}=d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{p}}, d y_{J}=d y_{j_{1}} \wedge$ $d y_{j_{2}} \wedge \cdots \wedge d y_{j_{p}}, d(x, y)_{K}$ is a product of p-forms of types $d x_{i}$ and $d y_{j}$, and f_{I}, g_{J}, h_{K} are smooth complex valued functions.

Now, $d x_{i}=(1 / 2)\left(d z_{i}+d \bar{z}_{i}\right)$ and $d y_{i}=(1 / 2 \boldsymbol{i})\left(d z_{i}-d \bar{z}_{i}\right)$. Expressing the terms in ω by using $d z_{i}$ and $d \bar{z}_{i}$ we arrive at

$$
\omega=\sum k_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{r}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{s}}
$$

which we abbreviate as $\omega=\sum k_{I, J} d z_{I} \wedge d \bar{z}_{J}$. We say that each term of this sum is a p-form of type $(r, s), r+s=p$. It follows that a p-form ω has a unique expression as a sum

$$
\omega=\omega^{(p, 0)}+\omega^{(p-1,1)}+\cdots+\omega^{(0, p)},
$$

where $\omega^{(r, s)}$ is of type (r, s).
Let $a^{0}(U)$ be the \mathbb{C}-algebra $C^{\infty}(U, \mathbb{C})$ and $a^{p}(U)$ the $a^{0}(U)$-module of C^{∞} complex p-forms on U. The decomposition above induces a decomposition

$$
a^{p}(U)=a^{(p, 0)}(U) \oplus a^{(p-1,1)}(U) \oplus \cdots \oplus a^{(0, p)}(U)
$$

We have the exterior differential $d: \boldsymbol{a}^{p}(U) \rightarrow \boldsymbol{a}^{p+1}(U)$ (see [Lima2]). For $f \in a^{0}(U)$, using the derivations defined in section 2.1.2, we have

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}} d z_{i}+\sum_{i=1}^{n} \frac{\partial f}{\partial \bar{z}_{i}} d \bar{z}_{i} .
$$

Define, on the level of functions,

$$
\begin{equation*}
\partial f=\sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}} d z_{i} \text { and } \bar{\partial} f=\sum_{i=1}^{n} \frac{\partial f}{\partial \bar{z}_{i}} d \bar{z}_{i} . \tag{1}
\end{equation*}
$$

On the level of forms, if

$$
\omega^{(r, s)}=\sum k_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{r}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{s}},
$$

we let

$$
\begin{equation*}
\partial \omega^{(r, s)}=\sum \partial k_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} \wedge d z_{i_{1}} \wedge \cdots \wedge d z_{i_{r}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{s}} \tag{2}
\end{equation*}
$$

a form of type $(r+1, s)$ and

$$
\begin{equation*}
\bar{\partial} \omega^{(r, s)}=\sum \bar{\partial} k_{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}} \wedge d z_{i_{1}} \wedge \cdots \wedge d z_{i_{r}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{s}} \tag{3}
\end{equation*}
$$

of type $(r, s+1)$. We are left with

$$
\begin{equation*}
d \omega^{(r, s)}=\partial \omega^{(r, s)}+\bar{\partial} \omega^{(r, s)} . \tag{4}
\end{equation*}
$$

For an arbitrary p-form $\omega=\sum_{r+s=p} \omega^{(r, s)}$, we put

$$
\begin{equation*}
\partial \omega=\sum_{r+s=p} \partial \omega^{(r, s)} \text { and } \bar{\partial} \omega=\sum_{r+s=p} \bar{\partial} \omega^{(r, s)} . \tag{5}
\end{equation*}
$$

It follows that $d=\partial+\bar{\partial}$ and the following properties hold (exercise):

$$
\begin{aligned}
& \partial\left(\omega^{p} \wedge \eta\right)=\partial \omega^{p} \wedge \eta+(-1)^{p} \omega^{p} \wedge \partial \eta, \\
& \bar{\partial}\left(\omega^{p} \wedge \eta\right)=\bar{\partial} \omega^{p} \wedge \eta+(-1)^{p} \omega^{p} \wedge \bar{\partial} \eta .
\end{aligned}
$$

Moreover, (exercise)

$$
\partial \partial \omega^{(r, s)}+\bar{\partial} \partial \omega^{(r, s)}+\partial \bar{\partial} \omega^{(r, s)}+\bar{\partial} \bar{\partial} \omega^{(r, s)}=d d \omega^{(r, s)}=0 .
$$

By comparing the form types in the above summation we conclude that

$$
\begin{equation*}
\partial^{2}=\partial \partial=0, \partial \bar{\partial}+\bar{\partial} \partial=0, \bar{\partial}^{2}=\bar{\partial} \bar{\partial}=0 . \tag{6}
\end{equation*}
$$

A $(p, 0)$-form $\omega^{(p, 0)}=\sum f_{i_{1}, \ldots, i_{p}} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}}$ is holomorphic if the coefficients $f_{i_{1}, \ldots, i_{p}}$ are holomorphic functions. In this case,

$$
\bar{\partial} \omega=\sum \bar{\partial} f_{i_{1}, \ldots, i_{p}} \wedge d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}}=0 .
$$

Conversely, if $\bar{\partial} \omega^{(p, 0)}=0$, then ω has holomorphic coefficients. For holomorphic forms we have $\partial \omega=d \omega$.

4.2 Volume forms and the Hodge *-operator

With the identification $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$, the usual inner product on $\mathbb{R}^{2 n}$ extends to a Hermitian product on $T_{\xi}^{\mathbb{C}} \mathbb{C}^{n}$,

$$
\begin{equation*}
<a v, b w>_{\xi}=a \bar{b}<v, w>_{\xi}, \quad a, b \in \mathbb{C}, v, w \in T_{\xi}^{\mathbb{C}} \mathbb{C}^{n} \tag{7}
\end{equation*}
$$

The basis

$$
\left\{\frac{\partial}{\partial z_{1}}(\xi), \ldots, \frac{\partial}{\partial z_{n}}(\xi), \frac{\partial}{\partial \bar{z}_{1}}(\xi), \ldots, \frac{\partial}{\partial \bar{z}_{n}}(\xi)\right\}
$$

is orthogonal and

$$
\begin{equation*}
\left\langle\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{i}}\right\rangle_{\xi}=\left\langle\frac{\partial}{\partial \bar{z}_{i}}, \frac{\partial}{\partial \bar{z}_{i}}\right\rangle_{\xi}=\frac{1}{2} \tag{8}
\end{equation*}
$$

for $1 \leq i \leq n$ (exercise). It follows that the decomposition

$$
T_{\xi}^{\mathbb{C}} \mathbb{C}^{n}=\mathbb{V}_{\xi} \oplus \overline{\mathbb{V}}_{\xi}
$$

is orthogonal.
On the other hand, this Hermitian product induces naturally a Hermitian inner product on the algebra of complex valued forms at a point ξ, which is characterized by the property that: if $\left\{v_{1}, \ldots, v_{2 n}\right\}$ is a basis for $T_{\xi}^{\mathbb{C}} \mathbb{C}^{n}$ and $\left\{u_{1}, \ldots, u_{2 n}\right\}$ is its dual basis, then

$$
u_{j_{1}} \wedge \cdots \wedge u_{j_{r}}, \quad 1 \leq j_{1}<\cdots<j_{r} \leq 2 n, \quad 1 \leq r \leq 2 n
$$

is ortonormal. It follows that two forms of different bidegree are orthogonal and, for two (r, s)-forms $\omega=\sum a_{I, J} d z_{I} \wedge d \bar{z}_{J}$ and $\eta=\sum b_{I, J} d z_{I} \wedge d \bar{z}_{J}$,

$$
\begin{equation*}
<\omega, \eta>_{\xi}=2^{r+s} \sum_{I, J} a_{I, J}(\xi) \bar{b}_{I, J}(\xi) . \tag{9}
\end{equation*}
$$

The factor 2^{r+s} is because

$$
\begin{equation*}
<d z_{i}, d z_{i}>_{\xi}=<d \bar{z}_{i}, d \bar{z}_{i}>_{\xi}=2, \quad 1 \leq i \leq n \tag{10}
\end{equation*}
$$

since the dual basis satisfies (8). The norm of ω at ξ is defined by

$$
\begin{equation*}
|\omega|_{\xi}=\sqrt{<\omega, \omega>_{\xi}} \tag{11}
\end{equation*}
$$

A volume form $d \mathcal{V}$ on U is a real, continuous 2 n-form on U with $|d \mathcal{V}|_{\xi}=$ 1 , for all $\xi \in U$. Such a form clearly defines an orientation of U (see [Lima1])
and conversely, if U is oriented, then there is a unique volume form on U which defines this orientation. In $\mathbb{R}^{2 n} \approx \mathbb{C}^{n}$ the volume form is

$$
\begin{equation*}
d \mathcal{V}=d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n} \tag{12}
\end{equation*}
$$

This translates into

$$
\begin{equation*}
d \mathcal{V}=\left(\frac{\boldsymbol{i}}{2}\right)^{n} d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n} \tag{13}
\end{equation*}
$$

We leave to the reader, as an exercise, to show that equivalently,

$$
d \mathcal{V}=\left\{\begin{array}{l}
\frac{1}{n!} \varsigma^{n}, \text { where } \varsigma=\frac{i}{2} \sum_{i=1}^{n} d z_{i} \wedge d \bar{z}_{i} \tag{13bis}\\
\frac{(-1)^{n(n-1) / 2}}{(2 i)^{n}} d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{n} \wedge d z_{1} \wedge \cdots \wedge d z_{n}
\end{array}\right.
$$

The volume of U is, by definition, $\operatorname{vol}(U)=\int_{U} d \mathcal{V}$.
Consider now continuous differential forms on U with compact support. We have a Hermitian inner product defined by:

$$
\begin{equation*}
<\omega, \eta>_{U}=\int_{U}<\omega, \eta>_{\xi} d \mathcal{V} \tag{14}
\end{equation*}
$$

The associated norm is

$$
\begin{equation*}
|\omega|_{L^{2}}=\sqrt{<\omega, \omega>_{U}} \tag{15}
\end{equation*}
$$

Suppose now that $X \subset \mathbb{R}^{N}$ is a manifold of dimension N with boundary ∂X. The inner product in \mathbb{R}^{N} induces, by restriction, an inner product in $T_{\xi} \partial X \subset T_{\xi} X$. We have then a unique volume element on $\partial X, d \mathcal{S}$, which defines the induced orientation of ∂X. As before, the integral of a function g along ∂X is $\int_{\partial X} g d \mathcal{S}$ and the volume of ∂X is $\int_{\partial X} d \mathcal{S}$ (this is not as obvious as in the case of a domain U. Here we must use the Riesz representation theorem which states that there is a unique positive Borel measure ν on ∂X, such that $\int_{\partial X} g d \mathcal{S}=\int_{\partial X} g d \nu, g$ compactly supported).

Let $\mathbf{i}: \partial X \rightarrow \mathbb{R}^{N}$ be the inclusion map. If f is a defining function for X in a neighborhood of $\xi \in \partial X$ such that $|d f|_{\xi}=1$ then, by choosing $N-1$ continuous real 1-forms $\eta_{2}, \ldots, \eta_{N}$ in such a way that

$$
\left\{d f_{\xi}, \eta_{2 \xi}, \ldots, \eta_{N \xi}\right\}
$$

is a positively oriented orthonormal basis of the cotangent space $\check{T}_{\xi} \mathbb{R}^{N}$, we have that

$$
\begin{equation*}
d \mathcal{S}=\mathbf{i}^{*}\left(\eta_{2} \wedge \cdots \wedge \eta_{N}\right) . \tag{16}
\end{equation*}
$$

We are now ready to introduce the Hodge *-operator. First some notations. Consider the set $\{1, \ldots, N\}$. If $A \subset\{1, \ldots, N\}$ we let $|A|$ denote its cardinality and $A^{\prime}=\{1, \ldots, N\} \backslash A$, with the order induced by the order of $\{1, \ldots, N\}$. Given $A, B \subset\{1, \ldots, N\}$ we let

$$
\delta_{B}^{A}= \begin{cases}\operatorname{sgn} \sigma, & \text { if } A=B \text { as sets and } \sigma \text { is a permutation } \tag{17}\\ & \text { taking } A \text { onto } B . \\ 0, & \text { in all other cases. }\end{cases}
$$

Exercise 6 Show that $\delta_{B}^{A}=\delta_{A}^{B}, \delta_{C}^{A}=\delta_{B}^{A} \delta_{C}^{B}, \delta_{B A}^{A B}=(-1)^{r s}$ where $|A|=r$, $|B|=s$.

Theorem 4.2.1 Let $d \mathcal{V}$ be a volume form for the domain $U \subset \mathbb{C}^{n}$. There exists a unique operator

$$
*: a^{p}(U) \longrightarrow a^{2 n-p}(U)
$$

satisfying:

$$
\begin{equation*}
\left(a \omega_{\xi}+b \eta_{\xi}\right)=a\left(\omega_{\xi}\right)+b\left(* \eta_{\xi}\right), \quad a, b \in \mathbb{C} . \tag{18}
\end{equation*}
$$

that is, * is \mathbb{C}-linear.

$$
\begin{gather*}
* \text { is real, } * \bar{\omega}=\overline{* \omega} . \tag{19}\\
* * \omega=(-1)^{(2 n-p) p} \omega, \quad \omega \in a^{p}(U) . \tag{20}\\
* 1=d \nu_{\xi}, \quad * d \nu_{\xi}=1 . \tag{21}\\
\omega_{\xi} \wedge * \bar{\eta}_{\xi}=<\omega, \eta>_{\xi} d \nu_{\xi} . \tag{22}
\end{gather*}
$$

Proof: Choose an orthonormal basis $\left\{u_{1}, \ldots, u_{2 n}\right\}$ for $\check{T}_{\xi}^{\mathrm{C}} \mathbb{C}^{n}$ such that $u_{1} \wedge \cdots \wedge u_{2 n}=d \nu_{\xi}$. Let $u_{J}=u_{j_{1}} \wedge \cdots \wedge u_{j_{p}}$.

By linearity, it's enough to show that the properties above determine $* u_{J}$ for each p-tuple $J \subset\{1, \ldots, 2 n\}$. By (21) it is only necessary to consider $1 \leq$ $p \leq 2 n-1$. By (18), $* u_{J}$ is a (2n-p)-form and thus $* \bar{u}_{J}=\sum_{|K|=2 n-p} a_{K} u_{K}$, with $a_{K} \in \mathbb{C}$ and the sum extends over all strictly increasing ($2 \mathrm{n}-\mathrm{p}$)-tuples $K \subset\{1, \ldots, 2 n\}$. For one fixed such K we have

$$
\begin{equation*}
u_{K^{\prime}} \wedge * \bar{u}_{J}=a_{K} u_{K^{\prime}} \wedge u_{K}=a_{K} \delta_{\{1, \ldots, 2 n\}}^{K^{\prime} K} d \nu_{\xi} . \tag{23}
\end{equation*}
$$

By (22),

$$
\begin{equation*}
u_{K^{\prime}} \wedge * \bar{u}_{J}=<u_{K^{\prime}}, u_{J}>d \nu_{\xi}=\delta_{K^{\prime}}^{J} d \nu_{\xi} . \tag{24}
\end{equation*}
$$

(23) and (24) give $a_{K}=\delta_{K^{\prime}}^{J} \delta_{\{1, \ldots, 2 n\}}^{K^{\prime} K}=\delta_{\{1, \ldots, 2 n\}}^{J K}$ and we've discovered the face of $*$:

$$
\begin{equation*}
* u_{J}=\delta_{\{1, \ldots, 2 n\}}^{J J^{\prime}} \bar{u}_{J^{\prime}} . \tag{25}
\end{equation*}
$$

This shows uniqueness.
For the existence, choose any orthonormal basis $\left\{u_{1}, \ldots, u_{2 n}\right\}$ for $\check{T}_{\xi}^{\mathbb{C}} \mathbb{C}^{n}$ such that $u_{1} \wedge \cdots \wedge u_{2 n}=d \mathcal{V}_{\xi}$. Define $* u_{J}$ by (25) and extend it by demanding \mathbb{C}-linearity. We leave to the reader the task to verify that $*$ so defined satisfies all the stated properties. Notice that we've shown that $*$ does not depend on the choice of the orthonormal basis.

Specializing further to (r, s)-forms we have

Proposition 4.2.2

$$
\begin{gather*}
\omega^{(r, s)} \in a^{r, s}(U) \Longrightarrow * \omega^{(r, s)} \in a^{n-s, n-r}(U) \tag{26}\\
\omega^{(r, s)} \in a^{r, s}(U) \Longrightarrow * * \omega^{(r, s)}=(-1)^{r+s} \omega^{(r, s)} \tag{27}
\end{gather*}
$$

For $J \subset\{1, \ldots, n\}$ and $|J|=s$,

$$
\begin{equation*}
* d z_{J}=\frac{(-1)^{s(s-1) / 2}}{2^{n-s} \boldsymbol{i}^{n}} d z_{J} \wedge\left(\bigwedge_{i \in J^{\prime}} d \bar{z}_{i} \wedge d z_{i}\right) \tag{28}
\end{equation*}
$$

Proof: For $\omega^{(r, s)} \in a^{r, s} \underline{(U)}$ we have $<\omega^{(r, s)}, \eta>_{\xi} \neq 0$ only when $\eta \in$ $a^{r, s}(U)$. (22) implies that $* \overline{\omega^{(r, s)}} \in a^{n-r, n-s}(U)$ and so $* \omega^{(r, s)} \in a^{n-s, n-r}(U)$. (27) follows from (20). Now,

$$
d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}=(-1)^{s(s-1) / 2} d z_{J} \wedge d \bar{z}_{J} \wedge(d z \wedge d \bar{z})_{J^{\prime}}
$$

By (22), $d z_{J} \wedge \overline{* d z_{J}}=2^{s} d \mathcal{V}$. Replacing $d \mathcal{V}$ by its expression (13) we get

$$
d z_{J} \wedge \overline{* d z_{J}}=2^{s}\left(\frac{\boldsymbol{i}}{2}\right)^{n}(-1)^{s(s-1) / 2} d z_{J} \wedge d \bar{z}_{J} \wedge(d z \wedge d \bar{z})_{J^{\prime}}
$$

It follows that

$$
\overline{* d z_{J}}=\frac{i^{n}(-1)^{s(s-1) / 2}}{2^{n-s}} d \bar{z}_{J} \wedge(d z \wedge d \bar{z})_{J^{\prime}}
$$

which is the conjugated of (28).
Returning to volume forms let us now consider a real manifold $X \in \mathbb{R}^{n}$, of dimension n, with boundary ∂X. Suppose f is a defining function for X in a neighborhood of a point $\xi \in \partial X$. Then

Proposition 4.2.3

$$
\begin{equation*}
d \mathcal{S}_{\xi}=\mathbf{i}^{*}\left(\frac{* d f_{\xi}}{\left|d f_{\xi}\right|}\right) \tag{29}
\end{equation*}
$$

Proof: Choose $u_{2}, \ldots, u_{n} \in \check{T}_{\xi} \mathbb{R}^{n}$ such that $\frac{d f_{\xi}}{\left|d f_{\xi}\right|}, u_{2}, \ldots, u_{n}$ is a positive orthonormal basis. By (25),

$$
*\left(\frac{d f_{\xi}}{\left|d f_{\xi}\right|}\right)=u_{2} \wedge \cdots \wedge u_{n}
$$

The proposition follows from (16).

Exercise 7 Show that

$$
* d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}
$$

Also, calculate the area of the unit sphere in \mathbb{R}^{n}.
In the complex situation we have the
Corollary 4.2.4 Let $U \in \mathbb{C}^{n}$ be a domain, with boundary ∂U a smooth manifold. Suppose f is a defining function for U in a neighborhood of a point $\xi \in \partial U$. Then,

$$
\begin{equation*}
d \mathcal{S}=2 \mathbf{i}^{*}\left(\frac{* \partial f}{|d f|}\right) \tag{30}
\end{equation*}
$$

Proof: We have, $* d f=*(\partial+\bar{\partial}) f=* \partial f+\overline{* \partial f}$, by (19). Now,

$$
\partial f=\sum_{j=1}^{n} \frac{\partial f}{d z_{j}} d z_{j}
$$

and then, by (28),

$$
\begin{align*}
* \partial f= & \sum_{j=1}^{n} \frac{\partial f}{d z_{j}} * d z_{j}=\frac{1}{2^{n-1} \boldsymbol{i}^{n}} \sum_{j=1}^{n} \frac{\partial f}{d z_{j}} d z_{j} \wedge\left(\bigwedge_{i \neq j} d \bar{z}_{i} \wedge d z_{i}\right)= \tag{31}\\
& \frac{1}{\boldsymbol{i}} \partial f \wedge \frac{\varsigma^{n-1}}{(n-1)!}
\end{align*}
$$

where ς is the form given in (13 bis). Conjugate this expression to get $\overline{* \partial f}$. We are left with

$$
\begin{equation*}
* d f=\left(\frac{1}{i} \partial f-\frac{1}{i} \bar{\partial} f\right) \wedge \frac{\varsigma^{n-1}}{(n-1)!} \tag{32}
\end{equation*}
$$

Now, $\mathbf{i}^{*} d f=0$ because $f=0$ defines ∂U around ξ. Hence, $-\mathbf{i}^{*}(\partial f)=$ $\mathbf{i}^{*}(\bar{\partial} f)$. It follows from (32) and (31) that

$$
\begin{equation*}
\mathbf{i}^{*}(* d f)=2 \mathbf{i}^{*}\left(\frac{1}{i} \partial f \wedge \frac{\varsigma^{n-1}}{(n-1)!}\right)=2 \mathbf{i}^{*}(* \partial f) \tag{33}
\end{equation*}
$$

(30) is then a consequence of (29).

4.3 The Bochner-Martinelli kernel

In order to define and exploit the Bochner-Martinelli kernel we must first use integration by parts to derive a formal adjoint of $\bar{\partial}$. The procedure is the same as in Riemannian geometry, where the formal adjoint of d is used to define the Laplace-Beltrami operator.

Let $\omega \in a^{r, s}\left(\mathbb{C}^{n}\right), \eta \in a^{r, s+1}\left(\mathbb{C}^{n}\right)$ and suppose at least one of them has compact support. Recall the inner product defined in (14). We have $\bar{\partial} \omega \in \boldsymbol{a}^{r, s+1}\left(\mathbb{C}^{n}\right)$ and so

$$
<\bar{\partial} \omega, \eta>_{\mathbb{C}^{n}}=\int_{\mathbb{C}^{n}}<\bar{\partial} \omega, \eta>_{\xi} d \mathcal{V}
$$

Now $* \bar{\eta} \in a^{n-r, n-s-1}\left(\mathbb{C}^{n}\right)$ by (26). Thus, $\bar{\partial} \omega \wedge * \bar{\eta} \in a^{n, n}\left(\mathbb{C}^{n}\right)$ and $<$ $\bar{\partial} \omega, \eta>_{\xi} d \mathcal{V}_{\xi}=(\bar{\partial} \omega \wedge * \bar{\eta})_{\xi}$. Choose a closed euclidean ball \bar{B} containing the support of the pertinent form in its interior. Then

$$
<\bar{\partial} \omega, \eta>_{\mathbb{C}^{n}}=\int_{\mathbb{C}^{n}} \bar{\partial} \omega \wedge * \bar{\eta}=\int_{\bar{B}} \bar{\partial} \omega \wedge * \bar{\eta} .
$$

We have $d(\omega \wedge * \bar{\eta})=\partial \omega \wedge * \bar{\eta}+\bar{\partial} \omega \wedge * \bar{\eta}+(-1)^{r+s} \omega \wedge d * \bar{\eta}$. But $\partial \omega \wedge * \bar{\eta}=0$ since $\omega \wedge * \bar{\eta} \in a^{n, n-1}\left(\mathbb{C}^{n}\right)$ and we are left with

$$
d(\omega \wedge * \bar{\eta})=\bar{\partial} \omega \wedge * \bar{\eta}+(-1)^{r+s} \omega \wedge d * \bar{\eta} .
$$

On the other hand, $\omega \wedge d * \bar{\eta}=\omega \wedge \partial * \bar{\eta}+\omega \wedge \bar{\partial} * \bar{\eta}$. But $\omega \wedge \partial * \bar{\eta}=0$ because $\partial * \bar{\eta}$ is of type $(n-r+1, n-s-1)$ and so

$$
d(\omega \wedge * \bar{\eta})=\bar{\partial} \omega \wedge * \bar{\eta}+(-1)^{r+s} \omega \wedge \bar{\partial} * \bar{\eta} .
$$

We conclude

$$
<\bar{\partial} \omega, \eta>_{\mathbb{C}^{n}}=\int_{\bar{B}} \bar{\partial} \omega \wedge * \bar{\eta}=\int_{\bar{B}} d(\omega \wedge * \bar{\eta})-\int_{\bar{B}}(-1)^{r+s} \omega \wedge \bar{\partial} * \bar{\eta} .
$$

By Stokes theorem,

$$
\int_{\bar{B}} d(\omega \wedge * \bar{\eta})=\int_{\partial \bar{B}} \omega \wedge * \bar{\eta}=0
$$

since $\omega \wedge * \bar{\eta} \equiv 0$ on $\partial \bar{B}$ and thus

$$
<\bar{\partial} \omega, \eta>_{\mathbb{C}^{n}}=\int_{\bar{B}} \bar{\partial} \omega \wedge * \bar{\eta}=-\int_{\bar{B}}(-1)^{r+s} \omega \wedge \bar{\partial} * \bar{\eta} .
$$

By (27), $(-1)^{r+s} \bar{\partial} * \bar{\eta}=* * \bar{\partial} * \bar{\eta}$. By (19), $* * \bar{\partial} * \bar{\eta}=* * \partial * \eta$. Therefore,

$$
\begin{align*}
<\bar{\partial} \omega, \eta>_{\mathbb{C}^{n}}= & -\int_{\bar{B}} \omega \wedge \overline{* * \partial * \eta}= \\
& \int_{\bar{B}} \omega \wedge \overline{*(-* \partial * \eta)}=<\omega,-* \partial * \eta>_{\mathbb{C}^{n}} \tag{34}
\end{align*}
$$

and $-* \partial *$ is the formal adjoint of $\bar{\partial}$.
Suppose now that neither ω nor η have compact support. We then do as follows: let $U \subset \mathbb{C}^{n}$ be a limited domain whose boundary ∂U is a smooth manifold and assume ω and η are smooth in a neighborhood of the closure \bar{U}. Then, proceeding exactly as in the deduction of (34) we arrive at

$$
<\bar{\partial} \omega, \eta>_{U}=<\omega,-* \partial * \eta>_{U}+\int_{\bar{U}} d(\omega \wedge * \bar{\eta}) .
$$

Using Stokes theorem we get

$$
\begin{equation*}
<\bar{\partial} \omega, \eta>_{U}=<\omega,-* \partial * \eta>_{U}+\int_{\partial U} \omega \wedge * \bar{\eta} . \tag{35}
\end{equation*}
$$

Exercise 8 Show that

$$
\begin{equation*}
<-* \partial * \eta, \omega>_{U}=<\eta, \bar{\partial} \omega>_{U}-\int_{\partial U} \bar{\omega} \wedge * \eta . \tag{36}
\end{equation*}
$$

We now introduce a kernel in $\mathbb{C}^{n} \times \mathbb{C}^{n}$, which is the complex analogue of the Newtonian potential in $\mathbb{R}^{n} \times \mathbb{R}^{n}$:

$$
\mathrm{G}(w, z)= \begin{cases}-\frac{1}{2 \pi} \log |w-z|^{2} & \text { for } n=1 \tag{37}\\ \frac{(n-2)!}{2 \pi^{n}}|w-z|^{2-2 n} & \text { for } n \geq 2\end{cases}
$$

In what follows, w will denote the variable of integration and z will be a parameter and we let

$$
\begin{equation*}
\alpha_{2 n-1}=\frac{2 \pi^{n}}{(n-1)!} \quad \text { and } \quad \Lambda=|w-z|^{2} \tag{38}
\end{equation*}
$$

Notice that, since the area of the sphere $S_{R}^{2 n-1} \subset \mathbb{C}^{n}$ of radius R is $\alpha_{2 n-1} R^{2 n-1}$, $\alpha_{2 n-1}$ is just the area of the unit sphere $S_{1}^{2 n-1}$.

Definition 4.3.1 The Bochner-Martinelli kernel (for functions) is the double form

$$
\mathrm{K}(w, z)=-* \partial_{w} \mathrm{G}(w, z)
$$

of type $(n, n-1)$ in w and type $(0,0)$ in z.
Lemma 4.3.2 $\mathrm{K}(w, z)$ is represented by the form

$$
\begin{equation*}
\mathrm{K}=\frac{(n-1)!}{(2 \pi i)^{n}|w-z|^{2 n}} \sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right) \tag{39}
\end{equation*}
$$

Proof: We have

$$
\partial_{w} \mathrm{G}(w, z)=-\frac{(n-1)!}{2 \pi^{n}|w-z|^{2 n}} \sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i}
$$

and so

$$
\begin{equation*}
-* \partial_{w} \mathrm{G}(w, z)=\frac{(n-1)!}{2 \pi^{n}|w-z|^{2 n}} \sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) * d w_{i} \tag{40}
\end{equation*}
$$

By (28),

$$
* d w_{i}=\frac{1}{2^{n-1} i^{n}} d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)
$$

Substituting this into (40) gives (39).

Notice that for $n=1$ (39) reads

$$
\mathrm{K}(w, z)=\frac{1}{2 \pi i} \frac{d w}{w-z}
$$

which is just the Cauchy kernel in one variable.
Lemma 4.3.3 $\bar{\partial}_{w} \mathrm{~K}(w, z)=0$ on $\mathbb{C}^{n} \times \mathbb{C}^{n} \backslash\{w=z\}$.
Proof: To simplify the writting put $C_{n}=\frac{(n-1)!}{(2 \pi i)^{n}}$. Then (39) assumes the form

$$
\mathrm{K}=C_{n} \Lambda^{-n} \sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)
$$

Thus,

$$
\begin{align*}
& \bar{\partial}_{w} \mathrm{~K}= C_{n} \bar{\partial}_{w} \Lambda^{-n} \wedge \\
& \sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)+ \tag{41}\\
& C_{n} \Lambda^{-n} \bar{\partial}_{w}\left[\sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)\right] .
\end{align*}
$$

Now, $\bar{\partial}_{w} \Lambda^{-n}=-n \Lambda^{-n-1} \sum_{k=1}^{n}\left(w_{k}-z_{k}\right) d \bar{w}_{k}$ and hence

$$
\begin{aligned}
& \bar{\partial}_{w} \Lambda^{-n} \wedge \sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)= \\
& -n \Lambda^{-n-1} \sum_{i=1}^{n}\left(w_{i}-z_{i}\right)\left(\bar{w}_{i}-\bar{z}_{i}\right) d \bar{w}_{i} \wedge d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)= \\
& -n \Lambda^{-n} d \bar{w}_{1} \wedge d w_{1} \wedge \cdots \wedge d \bar{w}_{n} \wedge d w_{n}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \bar{\partial}_{w}\left[\sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)\right]= \\
& n d \bar{w}_{1} \wedge d w_{1} \wedge \cdots \wedge d \bar{w}_{n} \wedge d w_{n}
\end{aligned}
$$

and the two terms in (41) cancel each other.

K normalizes the area of spheres, more precisely,

Lemma 4.3.4 Let $B_{\epsilon}(z)$ denote the euclidean ball centered at z and with radius ϵ. Then,

$$
\int_{\partial B_{\epsilon}(z)} \mathrm{K}(w, z)=1
$$

for all $z \in \mathbb{C}^{n}$ and for all $\epsilon>0$.
Proof: We have

$$
\partial_{w} \mathrm{G}(w, z)=\frac{-1}{\alpha_{2 n-1}} \frac{\partial \Lambda}{\Lambda^{n}}
$$

Now, along the sphere $\partial B_{\epsilon}(z), \Lambda=\epsilon^{2}$ and then,

$$
\begin{equation*}
-* \partial_{w} \mathrm{G}(w, z)=\frac{1}{\alpha_{2 n-1} \epsilon^{2 n}} * \partial \Lambda \tag{42}
\end{equation*}
$$

on $\partial B_{\epsilon}(z)$.
On the other hand, $f(w)=|w-z|^{2}-\epsilon^{2}=\Lambda-\epsilon^{2}$ is a defining function for $B_{\epsilon}(z)$ satisfying $\partial f=\partial_{w} \Lambda$ and

$$
d f=d_{w} \Lambda=\sum_{i=1}^{n}\left(\bar{w}_{i}-\bar{z}_{i}\right) d w_{i}
$$

By (9),

$$
|d f|_{\xi}^{2}=<d f, d f>_{\xi}=2^{1+1} \sum_{i=1}^{n}\left(\bar{\xi}_{i}-\bar{z}_{i}\right)\left(\xi_{i}-z_{i}\right)=2^{1+1} \epsilon^{2}=4 \epsilon^{2}
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \partial B_{\epsilon}(z)$, so that $|d f|=2 \epsilon$ on the sphere. Invoking (30) we see that

$$
* \partial_{w} \Lambda=* \partial f=\epsilon d \mathcal{S}
$$

on $\partial B_{\epsilon}(z)$ and (42) becomes,

$$
\begin{equation*}
-* \partial_{w} \mathrm{G}(w, z)=\frac{1}{\alpha_{2 n-1} \epsilon^{2 n}} \epsilon d \mathcal{S}=\frac{1}{\alpha_{2 n-1} \epsilon^{2 n-1}} d \mathcal{S} \tag{43}
\end{equation*}
$$

Integration gives

$$
\int_{\partial B_{\epsilon}(z)} \mathrm{K}(w, z)=\int_{\partial B_{\epsilon}(z)}-* \partial_{w} \mathrm{G}(w, z)=\frac{1}{\alpha_{2 n-1} \epsilon^{2 n-1}} \int_{\partial B_{\epsilon}(z)} d \mathcal{S}=1
$$

Theorem 4.3.5 Let $U \subset \mathbb{C}^{n}$ be a limited domain whose boundary ∂U is a smooth manifold. Suppose f is a smooth complex function defined in a neighborhood of \bar{U}. Then, for $z \in U$,

$$
f(z)=<\bar{\partial} f, \bar{\partial}_{w} \mathrm{G}>_{U}-\int_{\partial U} f \wedge * \partial_{w} \mathrm{G}
$$

Proof: Given $z \in U$ choose ϵ small enough so that $B_{\epsilon}(z) \subset U$. Invoking (35) we have, taking due attention to the orientation,

$$
\begin{align*}
& <\bar{\partial} f, \bar{\partial}_{w} \mathrm{G}>_{U \backslash B_{\epsilon}(z)}= \\
& <f,-* \partial_{w} * \bar{\partial}_{w} \mathrm{G}>_{U \backslash B_{\epsilon}(z)}+\int_{\partial U} f \wedge * \overline{\bar{\partial}_{w} \mathrm{G}}-\int_{\partial B_{\epsilon}(z)} f \wedge * \overline{\bar{\partial}_{w} \mathrm{G}} \tag{44}
\end{align*}
$$

Since $G=\bar{G}$,

$$
\partial_{w} * \bar{\partial}_{w} \mathrm{G}=\partial_{w} * \overline{\partial_{w} \mathrm{G}}=\partial_{w}\left(\overline{* \partial_{w} \mathrm{G}}\right)=\overline{\bar{\partial}_{w}\left(* \partial_{w} \mathrm{G}\right)}=-\overline{\bar{\partial}_{w} \mathrm{~K}}=0
$$

by lemma 4.3.3. Therefore (44) assumes the form

$$
\begin{equation*}
<\bar{\partial} f, \bar{\partial}_{w} \mathrm{G}>_{U \backslash B_{\epsilon}(z)}-\int_{\partial U} f \wedge * \partial_{w} \mathrm{G}=-\int_{\partial B_{\epsilon}(z)} f \wedge * \partial_{w} \mathrm{G} \tag{45}
\end{equation*}
$$

We now let $\epsilon \rightarrow 0$. The left side of (45) tends to

$$
<\bar{\partial} f, \bar{\partial}_{w} \mathrm{G}>_{U}-\int_{\partial U} f \wedge * \partial_{w} \mathrm{G}
$$

and it remains to show

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}-\int_{\partial B_{\epsilon}(z)} f \wedge * \partial_{w} \mathrm{G}=f(z) \tag{46}
\end{equation*}
$$

To see why this holds we do as follows:

$$
-\int_{\partial B_{\epsilon}(z)} f(w) * \partial_{w} \mathrm{G}(w, z)=-\int_{\partial B_{\epsilon}(z)}[f(z)+f(w)-f(z)] * \partial_{w} \mathrm{G}(w, z)
$$

Now,

$$
\begin{align*}
& -\int_{\partial B_{\epsilon}(z)}[f(z)+f(w)-f(z)] * \partial_{w} \mathrm{G}(w, z)= \\
& -\int_{\partial B_{\epsilon}(z)} f(z) * \partial_{w} \mathrm{G}(w, z)-\int_{\partial B_{\epsilon}(z)}[f(w)-f(z)] * \partial_{w} \mathrm{G}(w, z) . \tag{47}
\end{align*}
$$

But,

$$
\begin{aligned}
& -\int_{\partial B_{\epsilon}(z)} f(z) * \partial_{w} \mathrm{G}(w, z)=f(z) \int_{\partial B_{\epsilon}(z)}-* \partial_{w} \mathrm{G}(w, z)= \\
& f(z) \int_{\partial B_{\epsilon}(z)} \mathrm{K}(w, z)=f(z)
\end{aligned}
$$

by lemma 4.3.4 and (47) reads

$$
-\int_{\partial B_{\epsilon}(z)} f \wedge * \partial_{w} \mathrm{G}=f(z)-\int_{\partial B_{\epsilon}(z)}[f(w)-f(z)] * \partial_{w} \mathrm{G}(w, z) .
$$

Since f is continuous, $\sup _{w \in \partial B_{\epsilon}(z)}|f(w)-f(z)| \rightarrow 0$ as $\epsilon \rightarrow 0$ and, by the proof of lemma 4.3.4

$$
* \partial_{w} \mathrm{G}(w, z)=\frac{-1}{\alpha_{2 n-1} \epsilon^{2 n-1}} d \mathcal{S}
$$

on $\partial B_{\epsilon}(z)$. Hence,

$$
\begin{aligned}
& \left|\int_{\partial B_{\epsilon}(z)}[f(w)-f(z)] * \partial_{w} \mathrm{G}(w, z)\right| \leq \\
& \sup _{w \in \partial B_{\epsilon}(z)}|f(w)-f(z)| \cdot \frac{1}{\alpha_{2 n-1} \epsilon^{2 n-1}} \int_{\partial B_{\epsilon}(z)} d \mathcal{S}= \\
& \sup _{w \in \partial B_{\epsilon}(z)}|f(w)-f(z)| \underset{\epsilon \rightarrow 0}{\longrightarrow} 0
\end{aligned}
$$

and (46) is true. The theorem is proved.
Notice that, when $n=1$ theorem 4.3.5 reads

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial U} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \int_{U} \frac{\partial f}{\partial \bar{w}}(w) \frac{d \bar{w} \wedge d w}{w-z},
$$

which is the classical generalized Cauchy integral formula for smooth functions.

Theorem 4.3.6 (The Bochner-Martinelli integral formula) Let $U \subset$ \mathbb{C}^{n} be a limited domain whose boundary ∂U is a smooth manifold. Suppose $f: \bar{U} \rightarrow \mathbb{C}$ is continuous and f is holomorphic in U. Then,

$$
\int_{\partial U} f(w) \mathrm{K}(w, z)= \begin{cases}f(z) & \text { for } z \in U \\ 0 & \text { for } z \notin U .\end{cases}
$$

Proof: Suppose first that f is smooth in a neighborhood of \bar{U} and $\bar{\partial} f=0$. If $z \in U$, the result follows from theorem 4.3.5. If $z \notin \bar{U}$ then,

$$
d(f \mathrm{~K})=\bar{\partial}(f \mathrm{~K})=\bar{\partial} f \wedge \mathrm{~K}+f \wedge \bar{\partial}_{w} \mathrm{~K}=0
$$

by lemma 4.3.3. By Stokes theorem,

$$
0=\int_{U} d(f \mathrm{~K})=\int_{\partial U} f \mathrm{~K}
$$

The proof of the theorem now proceeds by constructing an exhaustion of U by relatively compact domains U_{k}, whose boundaries are smooth manifolds, $U=\cup_{k \geq 1} \bar{U}_{k}, \bar{U}_{k} \subset U_{k+1}$, and passing to the limit $k \rightarrow \infty$.

Let us now consider $\mathrm{B}_{0}(w)=\mathrm{K}(w, 0)$. We have, by (39),

$$
\mathrm{B}_{0}(w)=\frac{(n-1)!}{(2 \pi i)^{n}|w|^{2 n}} \sum_{i=1}^{n} \bar{w}_{i} d w_{i} \wedge\left(\bigwedge_{j \neq i} d \bar{w}_{j} \wedge d w_{j}\right)
$$

A manipulation shows that (exercise),

$$
\begin{equation*}
\mathrm{B}_{0}(w)=(-1)^{n(n-1) / 2} \frac{(n-1)!}{(2 \pi i)^{n}|w|^{2 n}} \sum_{i=1}^{n} \overline{\vartheta_{i}(w)} \wedge \vartheta(w) \tag{48}
\end{equation*}
$$

where

$$
\vartheta(w)=d w_{1} \wedge \cdots \wedge d w_{n}
$$

and

$$
\overline{\vartheta_{i}(w)}=(-1)^{i-1} \bar{w}_{i} d \bar{w}_{1} \wedge \cdots \wedge \widehat{d \bar{w}_{i}} \wedge \cdots d \bar{w}_{n}
$$

Let

$$
\ell_{n}=(-1)^{n(n-1) / 2} \frac{(n-1)!}{(2 \pi i)^{n}}
$$

We now define

$$
\begin{equation*}
\mathrm{B}(z, \zeta)=\ell_{n} \frac{\sum_{i=1}^{n} \overline{\vartheta_{i}(z-\zeta)} \wedge \vartheta(\zeta)}{|z-\zeta|^{2}} \tag{49}
\end{equation*}
$$

This is the same as

$$
\begin{equation*}
\mathrm{B}(z, \zeta)=\ell_{n} \frac{\sum_{i=1}^{n}(-1)^{i-1}\left(\bar{z}_{i}-\bar{\zeta}_{i}\right) \bigwedge_{j \neq i}\left(d \bar{z}_{j}-d \bar{\zeta}_{j}\right) \wedge d \zeta_{1} \wedge \cdots \wedge d \zeta_{n}}{|z-\zeta|^{2}} \tag{50}
\end{equation*}
$$

$\mathrm{B}(z, \zeta)$ is related to the Grothendieck residues, as we will indicate in the next section.

4.4 Dolbeault cohomology

We now want to introduce a cohomology theory for the $\bar{\partial}$ operator. Recall that De Rham's cohomology on U is defined by (see [Lima2]): let $Z^{p}(U)=\left\{\omega \in a^{p}(U): d \omega=0\right\}, p \geq 0,\left(\right.$ closed p-forms) and $B^{p}(U)=$ $d\left(a^{p-1}(U)\right)$ if $p \geq 1$ and $B^{0}(U)=\{0\}$ (exact p-forms). Since $d^{2}=0$, $B^{p}(U)$ is a subspace of $Z^{p}(U)$. The quocient spaces

$$
H_{D R}^{p}(U)=\frac{Z^{p}(U)}{B^{p}(U)} \quad p \geq 0
$$

measure the obstruction to solving the equation $d \theta=\omega$ on U, that is, given ω such that $d \omega=0$, find θ satisfying $d \theta=\omega$. Notice that the differentiable structure of U is clearly involved in the definition of the groups $H_{D R}^{p}(U)$. Locally, the necessary condition $d \omega=0$ is also sufficient to solve $d \theta=\omega$ (Poincaré's lemma). A deep theorem by De Rham shows that in fact the groups $H_{D R}^{p}(U)$ depend only on the topology of U, since this result exhibits an isomorphism $H_{D R}^{p}(U) \approx H_{s}^{p}(U ; \mathbb{C})$ (singular cohomology with coefficients in \mathbb{C}).

For example, the kernel B_{0} restricts, by (43), to a positive multiple of the area element of the sphere $S_{\delta}^{2 n-1}(0) . \quad \mathrm{B}_{0}$ is then a generator of $H_{D R}^{2 n-1}\left(S_{\delta}^{2 n-1}(0) ; \mathbb{C}\right)$.

Now for the Dolbeault cohomology. Given $\omega \in a^{(r, s)}(U), s \geq 1$, one wants to find a solution $\theta \in a^{(r, s-1)}(U)$ of the equation $\bar{\partial} \theta=\omega$. Again, because $\bar{\partial}^{2}=0$, a necessary condition is that $\bar{\partial} \omega=0$. "Locally", this necessary condition is also sufficient, more precisely, for polydiscs in \mathbb{C}^{n} a solution can be found. This is the content of the Bochner-DolbeaultGrothendieck lemma (see [Gu]). On the other hand, the solvability of this equation globally, even for $U \subset \mathbb{C}^{n}$ a domain, is a much more involved question and depends on the global complex analytic properties of U.

The definition of the Dolbeault groups is: let

$$
Z_{r s}(U)=\left\{\omega \in a^{(r, s)}(U): \bar{\partial} \omega=0\right\}
$$

($\bar{\partial}$ closed (r, s)-forms) and

$$
B_{r s}(U)=\bar{\partial}\left(a^{(r, s-1)}(U)\right) \quad \text { if } \quad s \geq 1 \quad \text { and } \quad B_{r 0}(U)=\{0\} .
$$

The quotient

$$
H_{\bar{\partial}}^{r}{ }^{s}(U)=\frac{Z_{r s}(U)}{B_{r s}(U)}
$$

is the (r, s) Dolbeault cohomology group of U. Remark that $\mathcal{O}(U)=$ $H_{\bar{\partial}}^{0}(U)$.

Let us briefly indicate how the Bochner-Martinelli kernel is related to point residues. We cannot present complete arguments here since, to do so, we would have to develop sheaf cohomology theory. We refer the reader to [G-H].

For X a complex manifold of dimension n and a^{p} the sheaf of complex valued smooth p-forms on X, the Dolbeault theorem gives an isomorphism

$$
H^{q}\left(X, a^{p}\right) \approx H \frac{p q}{\bar{\partial}}(X)
$$

To define point residues we considered meromorphic forms of the form $\eta=g \frac{d z_{1} \wedge \cdots \wedge d z_{n}}{f_{1} \cdots f_{n}}$, with $f=\left(f_{1}, \ldots, f_{n}\right)$ a finite holomorphic map. We may assume f defined in a small euclidean ball B centered at $0 \in \mathbb{C}^{n}$. Recall that $f^{-1}(0)=\{0\}$.

Since $d=\bar{\partial}$ on forms of type (n, q), we have a natural map

$$
H^{n-1}\left(B \backslash\{0\}, a^{n}\right) \approx H_{\bar{\partial}}^{n n-1}(B \backslash\{0\}) \longrightarrow H_{D R}^{2 n-1}(B \backslash\{0\} ; \mathbb{C}) .
$$

$B \backslash\{0\}$ is homotopically the sphere $S_{\delta}^{2 n-1}(0)$ and B_{0} is a generator of $H_{D R}^{2 n-1}\left(S_{\delta}^{2 n-1}(0) ; \mathbb{C}\right) \approx \mathbb{C}$. The arrow above is then just integration over the sphere and the above sequence of spaces and maps means

$$
\left(\frac{1}{2 \pi i}\right)^{n} \eta \xrightarrow[\approx]{\text { Dolbeault theorem }} \varpi_{\eta} \longrightarrow \int_{S_{\delta}^{2 n-1}(0)} \varpi_{\eta} .
$$

ϖ_{η} is called the distinguished Dolbeault representative of $\frac{\eta}{(2 \pi i)^{n}}$.
Consider the map

$$
F: B \rightarrow \mathbb{C}^{n} \times \mathbb{C}^{n}
$$

defined by

$$
F(z)=(z+f(z), z) .
$$

It can be shown that $\varpi_{\eta}=g F^{*} \mathrm{~B}$ (recall (50)) and that

$$
\operatorname{Res}_{0}(g, f)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma_{\epsilon}} g(z) \frac{d z_{1} \wedge \cdots \wedge d z_{n}}{f_{1}(z) \cdots f_{n}(z)}=\int_{S_{\delta}^{2 n-1}(0)} g(z) F^{*} \mathrm{~B}(z, \zeta) .
$$

Bibliography

[A-V-GZ] A. Arnold, A. Varchenko, S. Goussein-Zadé, Singularités des applications différentiables, volume 1, Éditions Mir, Moscou, 1986.
[Dixon] John D. Dixon, A brief proof of Cauchy's integral theorem, Proc. Am. Math. Soc. 29 (1971), 625-626.
[D-N-F] B. Doubrovine, S. Novikov, A. Fomenko, Géométrie Contemporaine, Méthodes et Applications, volumes 1, 2, 3, Éditions Mir, Moscou, 1987.
[E-L] Eisenbud, D. \& Levine, H.I., An algebraic formula for the degree of a C^{∞} map germ, Annals Math. (2) 106,(1977), 19-44.
[Gr] Phillip A. Griffiths, Variations on a Theorem of Abel, Inventiones Math. 35 (1976), 321-390.
[G-H] Phillip Griffiths \& Joseph Harris, Principles of Algebraic Geometry, John Wiley \& Sons, ISBN 0-471-32792-1, 1978.
[Gu] Robert C. Gunning, Introduction to holomorphic functions of several variables, volumes 1, 2, 3, Wadsworth \& Brooks/Cole, ISBN 0-534-13309-6, 1990.
[Ha] Robin Hartshorne, Residues and Duality, Lecture Notes in Mathematics 20, Springer-Verlag, 1966.
[Hö] Lars Hörmander, An introduction to complex analysis in several variables, North-Holland, ISBN 0-444-88446-7, 1989.
[Lima 1] Elon Lages Lima, Introdução à Topologia Diferencial, Publicações Matemáticas do IMPA, ISBN 85-244-0157-5, 2001.
[Lima 2] Elon Lages Lima, Introducción a la Cohomologia de De Rham, Monografias del IMCA ${ }^{\circ} 18$, ISBN 9972-753-73-5, 2001.
[Mather] John N. Mather, Stability of C^{∞} mappings. I. The division theorem, Annals Math. (2) 87,(1968), 89-104.
[Milnor] John W. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, ISBN 0-8139-0181-2, 1978.
[Na] Raghavan Narasimhan, Complex analysis in one variable, Birkhäuser, ISBN 0-8176-3237-9, 1985.
[Pham] F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93, (1965), 333-367.
[Soares] Márcio G. Soares, Cálculo en una variable compleja, Serie Textos del IMCA ${ }^{o} 4$, ISBN 9972-753-71-9, 2001.

Index

A-equivalence 35
annulus 15
Bochner-Martinelli kernel 77
Cauchy kernel 5, 78
chain 10
cycle 11
domain 3
formal adjoint 76
function
entire 10
holomorphic 3, 26
meromorphic 17
regular of order $k 39$
Grothendieck residue 58
transformation law 60
index
of holomorphic map germ 30
of point relative to a path 5
local algebra of map germ 36
manifold
orientable 24
map
biholomorphic 27
degree 25
finite 54
germ 30
holomorphic 27
homotopic 25
order of 37
orientation preserving 24
proper 24
pushforward 54
sign 25
trace 54
Milnor number 36
module 40
multilocal algebra 49
multiplicity
of zero in one variable 18
of germ 36
orientation 24
path integral 4
path 3
closed 3
differentiable 3
juxtaposition 3
lenght 4
piecewise differentiable 4
reverse 4
Pham map 38
Poincaré Hopf index 30
additivity 33
polynomial subalgebra 46
primitive 5
principal part 16
regular sequence 62
residue
of Cauchy 17
singularity
essential 16
isolated 16
pole 16
order of pole 16
removable 16
starlike domain 8
theorem
Argument principle 19
Bochner-Martinelli
integral formula 81
of Brown 23
Local Cauchy's integral formula 9
Cauchy's residue 17
of Cauchy 11
of Cauchy-Goursat 8
of Cauchy-Goursat revisited 9
generalized Cauchy integral formula 81
Laurent's expansion 15
of Liouville 10
Local duality 62
of Preparation 42
Malgrange-Mather 42
of Morera 10
Nakayama's lemma 41
Rouché's principle 20
of Sard 23
Trace theorem 57
Weierstrass
division 40
Weierstrass
preparation 39
unit 36
volume form 70
Weierstrass polynomial 39

[^0]: *Partially supported by CNPq-Brazil.

